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A review of the technique of multipole expansion of the Coulomb interaction for a few electrons is pre-
sented. The correlation effects described by this multireference approach are beyond the methods based on a
single determinantal wave functionsstandard electron band structure calculation and molecular orbital
methodd. Starting with the Coulomb law, we use the technique of multipole expansion to calculate the crystal
electric field, mean field, and symmetry lowering for a number of many-electron configurationssf3, sf3, pf3,
anddf3d. We consider these configurations as very relevant for a model where threef electrons are localized
and the fourth electron is delocalized and can be expanded locally ins- , p- , d-states in the spirit of the tight
binding model. Prompted by the ideas of the double exchange, we study the intrasite multipole interaction,
which couples localized electronssf3d to delocalized ones on the same crystal site. We show that this interac-
tion may be responsible for an effective loss of magnetic moments when a suitable symmetry lowering takes
place. The present approach can be considered as a microscopic foundation of Kondo demagnetization when
the loss of magnetic moments occurs together with a structural phase transition. The approach may be relevant
for cerium and NpO2.
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I. INTRODUCTION

Recently, a new technique of multipole expansion of the
Coulomb interaction was presented in a number of
publications.1–3 First it was applied to a model of cerium
with only one 4f electron, which feels the Coulomb repul-
sion from neighboring electrons.1 Later, it was generalized
for the case of a 4f5d model where the 4f electron is
strongly coupled with a delocalized 5d electron.2 The main
reason for introducing such models is that, despite progress
in the field of electron band structure calculations,4 funda-
mental important intrasite correlations giving rise to atomic
term splittings are routinely ignored.2 The intrasite correla-
tions are typical for atoms with open electron shells. When
an atom has two or more valence electrons on orbitally de-
generate statesslike d- or f-d, its energy spectrum can be
very complex, reflecting the electronic degrees of freedom.5

There exist empirical observations known as Hund’s rules,
which prescribe the occupation of the orbitals, but those are
just consequences of the atomic theory of many-electron
states formulated by Condon and Shortley long ago.5 The
real driving force behind the term splitting is the Coulomb
repulsion of the valence electrons. In many atoms the split-
ting between the highest and the lowest electron levels is of
an order of few electronvolts, which is of the same magni-
tude as the electron band effects. Therefore, the full consid-
eration of intrasite interactions should be a necessary ingre-
dient of a many-electron theory aiming to capture these
missed correlations.

As was mentioned before,2 the failure of the standard
band structure approach to describe such effects is rather
serious. The band structure calculation assumes a solution
with only one Slater determinant and one electronic configu-
ration. From a quantum-chemical viewpoint this picture cor-
responds to a single determinant Hartree-Fock calculation

scheme without any correlation effects. Correlations appear
only if one takes into account several Slater determinants.
Such a calculation scheme is called configuration interaction
sCId or, more precise, multireference approach.

The multipole Coulomb expansion, on the other hand, re-
quires many Slater determinants2,3 smultireference treatmentd
and, from this point of view, it represents a genuine many-
electron method. It also provides a unified description of the
crystal field effects and the atomic term splittings. The intra-
site Coulomb repulsion, which is responsible for Hund’s
rules, is included on equal footing with the spin-orbit cou-
pling, and the crystal field effects. For a single site the tech-
nique is equivalent to the classical description of atomic
terms.5 Moreover, the model calculations of multiplet spectra
of the C60 molecular ion based on the multipole expansion3

are close6 to a sophisticated and advanced complete active
space self-consistent-fieldsCASSCFd method.7

In the present work we develop and accomplish the tech-
nique of multipole Coulomb interactions for the case of few
electrons. Another motivation is to clarify the microscopic
foundation of the intrasite coupling between localized and
conduction electrons. Such an interaction is often referred to
as the Anderson hybridization.8 However, the coupling was
discussed already by Zener 10 years earlier.9 Zener consid-
ered the coupling between an incompleted-shell and the
conduction electrons, and concluded that, in accordance with
Hund’s rules, it tends to align the spins in a ferromagnetic
manner.sThis is the third principle of his double-exchange
approach.9d Since the multipole Coulomb interactions offer a
microscopic basis for Hund’s rules and can even describe the
exceptions to them for a number of elements5 slike atomic
cerium with the1G4 ground state10d, we can apply the tech-
nique to derive the intrasite coupling from the Coulomb re-
pulsion, i.e., from first principles. Depending on the interplay
between the crystal symmetry and energy splittings, the out-
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come of this coupling may differ. As was shown by Zener,
the coupling can lead to a ferromagnetic or antiferromagnetic
ground state.9 In the following we will demonstrate that it
also can be the cause for a nonmagnetic ground statesthe
so-called Kondo effect11d. We consider this mechanism of
demagnetization as a candidate for theg→a phase transition
in cerium12 and for the symmetry loweringFm3m→Pn3m
in neptunium dioxide.13

The paper is organized as follows. In Sec. II we describe
our method for treating local electron configurations. Next
sSec. IIId we examine thoroughly the case of three localized
f electrons. In Sec. IV we generalize thef3 model by includ-
ing the multipole interactions with a valence electron which
is present instantaneously on the same site. We show that, in
the framework of this extended model, the disappearance of
the magnetic moments can be understood and ascribed to the
trigonal symmetry lowering. Our conclusions are summa-
rized in Sec. V.

II. MANY-ELECTRON CALCULATION

In this section we describe in detail how we construct the
basis consisting of many determinantal wave functions for a
many-electron system and how we calculate the relevant ma-
trix elements. As a model system we consider NpO2 with
three localized 5f electrons at the neptunium site, although
the technique is general and can be applied to other cases.
First, we perform a band structure calculation in order to
determine the conduction electron charge distribution in the
muffin-tin sMTd sphere around Np. Subsequently, we apply
the configuration interaction method to treat the many-
electron system consisting of the localized 5f3 electrons and
the conduction electron in the MT sphere.

A. Electron band structure calculation

We have started by performing an electron band structure
calculation of NpO2 using our linear augmented plane-wave
sLAPWd code.14 The calculation has been done assuming the
muffin-tin sMTd shape of the one-electron potential and the
Barth-Hedin expression for exchange,15 which is a variant of
the local density approximationsLDA d. The equal MT radii
RMT

Np =2.2206 andRMT
O =2.2206 in atomic unitssa.u.d were

chosen for Np and O, with the cubic lattice constanta
=10.2567 a.u.sor 5.4276 Åd.27 The MT potential and density
of Np and O have been obtained self-consistently using a
LAPW basis of,300 functions on a 20-point mesh of the
irreducible part of the Brillouin zone. The three 5f electrons
of Np were treated as core states, which adjust self-
consistently to the conduction electron density.

As a result of the calculation we obtained that NpO2 is an
insulator, with the energy gapDE=0.789 eV. The width of
the occupied electron band below the Fermi level isET
−EB=5.953 eV. The spin-orbit splitting between 5f7/2 and
5f5/2 one-electron states isD f =0.983 eV. The main goal of
the calculation, however, was the electron charge density dis-
tribution inside the neptunium MT sphere. The calculated
partial charges of different angular symmetrysl =0–3d are
quoted in Table I. An important result is that on average there

is approximately one conduction electron present inside the
Np MT sphere. Therefore, the localized 5f3 configuration of
Np cannot be considered separately from this valence elec-
tron, which can be of 7s-, 7p-, or 6d-type. The instantaneous
configuration at the neptunium site becomes 7s5f3, 7p5f3, or
6d5f3.

In all cases this additional electron experiences a strong
Coulomb repulsion with the three localized partners. This
interaction is not fully accounted for by the band structure
calculations because it requires a multideterminant treatment
or configuration interactionsCId.2 Therefore, we have to fol-
low a different route; below, we study the electron spectrum
using the multipole expansion of electronic densities.

B. Many-electron basis states

Our method of multipole expansion of the Coulomb inter-
action has been used before.1–3 Here, we formulate it in de-
tail for thesf3 configuration following Refs. 2 and 3. In Sec.
III we deal with the 5f3 configuration, which is easily ob-
tained fromsf3 by omitting ones electron. In Sec. IV we
consider 7s5f3, 7p5f3, and 6d5f3 configurations. For the lat-
ter two cases we will describe the important differences with
sf3.

We start by considering a face-centered cubicsfccd crystal
of N Np atoms. Each atomic site possesses one 7s and three
5f electrons. The position vector of an electron near a crystal
lattice sitenW is given by

RW snWd = XW snWd + rWsnWd. s2.1d

Here,XW snWd is the lattice vector, which specifies the centers of
the atomssNp nucleid on a rigid fcc lattice. The radius vector
rWsnWd is given in polar coordinates byfrsnWd ,VsnWdg, wherer is
the length andV=sQ ,fd stands for the polar angles. We
label the basis ket vectors at the lattice sitenW by a single
index I or, alternatively, by four one-electron indices
si1

f , i2
f , i3

f ; isd

uIlnW = ui1
f ,i2

f ,i3
f ; islnW . s2.2d

The index i f =smf ,sz
fd stands for the orbitalsmf =1–7d and

spin projectionssz= ±1/2d quantum numbers of onef elec-
tron. Therefore, there are 14 states which we label byi f

=1–14. Two states of thes electron are labeled byis=1,2.
The many-electron basis wave functions are

TABLE I. Angular-momentum-decomposedspartiald electronic
chargesQl

A and total chargesQA inside neptunium and oxygen MT
spheres and in the interstitial regionsLAPW calculations; see Ref. 4
for details and definitionsd; QNp=−s2QO+Qid.

A Np O Interstices/unit

Qs
A 0.041e 0.027e - - -

Qp
A 0.401e 4.313e - - -

Qd
A 0.261e 0.046e - - -

Qf
A 2.185e 0.011e - - -

QA +4.108ueu −0.284ueu −3.540ueu
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krW1,rW2,rW3,rW4uIlnW =
1

ÎNa
o
a

Psadp
t=1

3

krWtui t
flnW · krW4uislnW ,

s2.3d

wherea stands for a permutation of four electrons, the factor
Psad= ±1 takes into account the parity of the permutationa,
Na is the number of the permutations, and

krWui flnW = R fsrsnWddkn̂ui fl, s2.4ad

krW8uislnW = Rssr8snWddkn̂8uisl. s2.4bd

Here,R f andRs are the radial components of the 5f and 7s
electrons, respectively;n̂ stands for VsnWd. The 5f spin-
orbitals can be written as

kn̂ui fl = kn̂umfl ussszsfdd. s2.5d

Here, us is the spin functionss= ± d. The f-orbital parts,
kn̂umfl, are expressed in terms of spherical harmonics
Yl

msVd=kn̂u l ,ml. We find it convenient to work with real
spherical harmonics16 Yl

t, wheret=0, sm,cd or sm,sd.
The order of indices ins2.2d is important. For example, as

follows from the dynamical equivalence of the electrons, the
stateui1

f , i2
f , is, i3

f l can be reduced toui1
f , i2

f , i3
f ; isl by permuting

the third and the fourth electrons, i.e.,

ui1
f ,i2

f ,is,i3
f l = − ui1

f ,i2
f ,i3

f ; isl, s2.6d

and so on. To describe the same quantum state we will use
the basis vectorss2.2d and apply the permutation laws2.6d
when needed. Alternatively, one can use the corresponding
Slater determinants for the four-electron wave functions, Eq.
s2.3d. However, the permutation relations of the type of Eq.
s2.6d are more efficient for our purposes. Excluding equiva-
lent states, we find onlys14313312/3!d32=728 indepen-
dent functions, or determinants, for 7s5f3. sThese are 364,
2184, and 3640 for 5f3, 7p5f3, 6d5f3, respectively.d Notice
that every basis wave function is in fact a Slater determinant,
Eq. s2.3d.

C. Multipole repulsion between electrons

Now, we take into account the Coulomb intrasite and in-
tersite repulsion by expanding the interaction in multipole
series. As was discussed in Ref. 2, these interactions are
treated exactly in the chosen quantum spaces7s5f3d.

The Coulomb interaction between two electrons at sitesnW
andnW8 is given by

VsRW snWd,RW 8snW8dd =
1

uRW snWd − RW 8snW8du
. s2.7d

The multipole expansion in terms of site symmetry functions
sSAFsd sRef. 16d is

VsRW snWd,RW 8snW8dd = o
LL8

vLL8snW,nW8; r,r8d SLsn̂d SL8sn̂8d,

s2.8d

where

vLL8snW,nW8; r,r8d =E dVsnWd E dV8snW8d
SLsn̂d SL8sn̂8d

uRW snWd − RW 8snW8du
.

s2.9d

The SAFs are linear combinations of spherical harmonics
and transform as irreducible representations of a site point
group; see Ref. 16. The indexL stands forsl ,td, with t
=sG ,m ,kd. Here, l accounts for the angular dependence of
the multipolar expansion,G denotes an irreducible represen-
tation sin the present case the group isOhd, m labels the
representations that occur more than once, andk denotes the
rows of a given representation.

The intrasite case corresponds tonW =nW8. The interaction
function vLL8sr ,r8d;vLL8snW =nW8 ; r ,r8d then becomes par-
ticularly simple

vLL8sr,r8d = S r,
l

r.
sl+1dD 4p

2l + 1
dLL8, s2.10d

wherer.=maxsr ,r8d, r,=minsr ,r8d anddLL8=dtt8dll8. The
last expression is also site independent.

There is no simple analytical expression for the intersite
case,nW ÞnW8.17 The intersite multipole interactions are aniso-
tropic and, for practical purposes, it is important to use the
following dependence:17

vLL8snW,nW8; r,r8d ,
srdlsr8dl8

uXW snWd − XW snW8dul+l8+1
. s2.11d

D. Intrasite matrix elements

For the Coulomb interaction between four electronson a
same site nW we have a sum of six two-body terms

Vs4d =
1

2o
t=1

4

o
psÞtd=1

4

VsrWt,rWpd, s2.12d

where each term is given by the multipole expansions2.8d.
In order to calculate the matrix elements ofVs4d,
ki1

f , i2
f , i3

f ; isuVs4d u j1
f , j2

f , j3
f ; jsl, one has to classify the elec-

tronic transitions. Following Ref. 3, where the energy terms
of molecular ions C60

m±, m=2–5,were calculated, we consider
four possibilities for the fourths electron:s1d is→ js; s2d is

→ j3
f ; s3d is→ j2

f ; ands4d is→ j1
f , which we label by the index

a4=1–4. Thea4=2 anda4=4 transitions involve odd number
of transpositions amongj1

f , j2
f , j3

f ; js, and the parity is
Psa4=2d=Psa4=4d=−1. For two other transitions the num-
ber of transpositions is even andPsa4=1d=Psa4=3d=1. Af-
ter this we are left with only threej states, which we label as
j18, j28, and j38. For the next electron,i3

f , we can consider three
possibilities si3

f → j38 , i3
f → j28 , i3

f → j18d which we label by the
index a3=1–3. In this way we continue until we exhaust all
four electrons. As a result, each subcasesor electron transi-
tiond is classified by the three index labela;sa4,a3,a2d, and
its parity is Psad=Psa4dPsa3dPsa2d. Mathematically, we re-
duce a permutation of four electrons to a product of transpo-
sitions. The matrix elementkI uVs4d uJl is found as18
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kI uVs4duJl = o
a

PsadkI uVs4duJlsad, s2.13d

whereoa=oa4=1
4 oa3=1

3 oa2=1
2 , and

kI uVs4duJlsad = o
l,t

vl
s,ja4−f,ja3 cl,tsisja4d cl,tsi3

f ja3d

3 dsi2
f , ja2ddsi1

f , ja1d + p.i. s2.14d

Here,p.i. stands for the other pair Coulomb interactions, Eq.
s2.12d. fThe explicitly written term in Eq.s2.14d corresponds
to the interaction between the fourth and third electron.g The
elementscLsij d;cl,tsij d are defined by

cLsi j d =E dV ki un̂lSLsn̂dkn̂u jl. s2.15d

For the 7s5f3 configuration there are three types of these
coefficients. For thes-s transition it is only one integral
ksuY0

0usl=1/Î4p, which is not zero. For thef-f transitions
and real spherical harmonics,16 the coefficientscl,tsi f j fd were
tabulated in Ref. 1. Finally, there aref-s ands-f transitions
which require the evaluation ofcl,tsi f j sd. From the orthogo-
nality of spherical harmonics, we find that

k0,0uY3
tu3,tl =

1
Î4p

, s2.16d

wheret=0, sm,cd, sm,sd, m=1–3, andzero otherwise. The
matrix quantitiess2.15d were first introduced by Condon and
Shortley for the description of atomic spectra,5 but they are
also at the center of the calculation of the crystal electric
field effects.1

In Eq. s2.14d vl
s,ja4−f,ja3 stands for a radial average. The

general expression is

vl
a,b−c,e =E dr r2E dr8 r82 RasrdRbsrd

3 Rcsr8dResr8d vlsr,r8d, s2.17d

where Ra, Rb, Rc, and Re are radial components, and
vlsr ,r8d=vLLsr ,r8d is given by Eq.s2.10d. For the 7s5f3 con-
figuration the indicesa, b, c, e refer either to 7s or to 5f
electron radial components. There are only two types of ra-
dial integrals, corresponding to nontrivial multipolar terms
sl Þ0d of 7s5f3, which are

vl
f f−f f =E dr r2E dr8 r82 R f

2srd R f
2sr8d vlsr,r8d,

s2.18ad

vl8
fs−sf =E dr r2E dr8 r82 RssrdR fsrd

3 R fsr8dRssr8d vlsr,r8d . s2.18bd

Here, l =2,4,6 andl8=3, as follows from the selection rules
for cLsf fd and cL8sfsd. The radial integralsvl

f f−f f and vl8
fs−sf

are proportional to the quantitiesFl and Gl8 introduced by
Condon and Shortley in Ref. 5. It is important to notice that

even the 7s electron with the trivial dependence of its angu-
lar part is strongly coupled to the three 5f electrons through
f-s ands-f transitions.

The classification scheme for electronic transitions, which
we have introduced here, is very useful for handling the
single particle interactions as well. The main difference is
that now the interaction occurs with a single electron while
the rest of them produce Kronecker factors, Ref. 3. This
group of interactions includes the spin-orbit couplingHso,
the crystal electric fieldVCF, and the mean fieldVMF. The
latter two interactions are dealt with in Secs. III and IV. The
spin-orbit coupling is

Hso= o
i

Vsosid, s2.19d

where the sum runs over all electrons,Vso being the corre-
sponding one-electron spin-orbit operator. Thes electron
does not experience the spin-orbit coupling and, in the 7s5f3

case, the summation includes only three 5f termsVsosi fd, i f

=1–3,where

Vsosi fd = z fLW si fdSWsi fd. s2.20d

Here,LW si fd andSWsi fd are the one-electron operators of orbital
and spin momentum;z f is the constant of the spin-orbit cou-
pling. The full intrasite Hamiltonian is given byHintra=Vs4d

+Hso. It describes the 7s5f3 configuration of a free nep-
tunium ion. Since the present method is not based on pertur-
bation theory, it extends the classical calculations of Condon
and Shortley.5

E. Intersite matrix elements

We start with expressions2.8d and write it in the space of
many-electron basis vectorsuIl, Eq. s2.2d. Carrying out the
angular integrationsdVsnWd, dV8snWd, dVsnW8d, dV8snW8d, we
obtain

kI unWkI8unW8VsRW snWd,RW 8snW8dduJ8lnW8uJlnW8

=
1

Na
o
asnWd

o
a8snW8d

PsanWdPsanW8
8 d o

a=1

4

o
a8=1

4

o
LL8

vL
aa

L8
a8a8snW − nW8d

3HcLsia ja
adp

b=1

3

dsib jb
adJ

3HcL8sia8
8 j8a8a8d p

b8=1

3

dsib8
8 j8a8b8dJ . s2.21d

Here, the sum overa means the summation over all permu-
tations of indicesj1

f , j2
f , j3

f , js at sitenW transforming them to
indices ja

a sa=1–4d. Analogously, the sum overa8 implies
the summation over all permutations ofj81

f , j82
f , j83

f , j8s at

site nW8 transforming them toj8a
a8 sa=1–4d. Psad and Psa8d

stand for the parities of the permutations. Indicesa and a8
indicate which electron at sitenW interacts with which electron
at sitenW8. The other electrons labeled byb=1–3 at sitenW and
by b8=1–3 at sitenW8 do not contribute to the interaction and
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produce the Kronecker delta symbols. The coefficientscL are
defined by Eq.s2.15d, and the intersitesnW ÞnW8d interaction

elementvL
aa

L8
a8a8 is given by

vL
aa

L8
a8a8snW − nW8d =E dr r2E dr8 r82 Ra

2srd

3 Ra8
2 sr8d vLL8snW,nW8; r,r8d. s2.22d

For the four-electron space of 7s5f3, only evenl andl8 sin L,
L8d are retained in Eqs.s2.21d and s2.22d, and l,l8=0,2,4,6.
Two very important examples of intersite Coulomb interac-
tions, namely, the crystal electric field and the mean field,
will be considered in Secs. III and IV.

III. CRYSTAL AND MEAN FIELD OF THE 5 f3

CONFIGURATION

In this section we study the model where we assume that
there are only three localized 5f electrons at each neptunium
site.19 Although we believe that the model is not adequate for
a realistic description of NpO2, especially the part concern-
ing the loss of the magnetic moments in the ordered phase, it
is nevertheless very instructive to consider it in detail. The
5f3 configuration being relatively simple offers an opportu-
nity for thorough study and to understand the interplay be-
tween the disordered and ordered phases, or between the
crystal and quadrupolar mean field. On the other hand, the
configurations 7p5f3 and 6d5f3 involve too many basis states
and consume too much time to be processed self-consistently
for any temperature.

A. Free-ion electron energy spectrum

The basis states for the 5f3 configuration are given by

uIl = ui1
f ,i2

f ,i3
f l, s3.1d

where as before,i f =1–14. The total number of basis vectors
is 14313312/3! =364. We treat the 5f3 configuration in
the way which was specified in Sec. II.

There are onlyf-f transitions described by four radial
integralss2.18ad: vl

f f-f f, l =0,2,4,6. The others are zero due to
the selection rules imposed by the coefficientscLsi j d, Eq.
s2.15d. The radial integralv0

f f-f f sHubbardUd is not important
here since it does not result in term splittings. In the follow-
ing we will use the condensed notationF for f f, and thus
vl

f f-f f ;vl
F-F. These quantities are connected with the Slater

sCondon-Shortleyd parameters5 Fls5f ,5fd through the fol-
lowing relation:

vl
F-F =

4p

2l + 1
Fl . s3.2d

In particular, the Slater parametersF2, F4, andF6 of Amor-
etti et al.20 correspond tov2

F-F=14.007 eV,v4
F-F=7.091 eV,

andv6
F-F=3.168 eV.sIn order to obtain the exact term split-

ting quoted in Table II of Ref. 20, we had to scale their Slater
parameters by a factor of 0.9755.d Alternatively, the quanti-
tiesvl

F-F can be calculated by using the radial dependence of
the 5f electronsR f, Eq. s2.18ad. We have done such a cal-
culation and then corrected the parameters by comparing the
splittings of thef3 configuration with experimental data for
Pr3+ and Nd4+ sdetails are given in the Appendixd. We arrived
at

v2
F-F = 18.164, v4

F-F = 8.578,

v6
F-F = 3.362, z f = 0.2547, in eV. s3.3d

After calculating the matrix elements of the Coulomb re-
pulsion and the spin-orbit coupling, we diagonalize the ma-
trix

Hintra = Vs3d + Hso, s3.4d

and obtain the electronic spectrum of 5f3. The nine lowest
and two highest eigenvalues are shown in Table II, where for
comparison we also quote the spectrum of free Np ion of
Ref. 20. Notice that, in comparison with the spectrum20 of
Amoretti et al., 4F3/2 and 4F5/2 are higher than4I13/2 and

TABLE II. The nine lowest and two highest eigenvalues of 5f3, calculated withvl
F-F, Eq. s3.3d. Here,g

stands for the Landé factor;EA refers to the calculation of Amorettiet al., Ref. 20. Two highest values ofEA

marked by asterisk were reproduced by our calculation with the parameters of Ref. 20.

Term Deg. g smBd E, meV EA, meV

1 4I9/2 10 0.7546 0 0

2 4I11/2 12 0.9704 635.3 657.7

3 4I13/2 14 1.0993 1204.2 1256.2

4 4F3/2 4 0.6027 1244.2 948.3

5 2H9/2 10 1.0154 1617.7 1438.3

6 4F5/2 6 1.0067 1702.9 1399.3

7 4I15/2 16 1.1797 1715.3 1762.3

8 4S3/2 4 1.6546 1861.6 1614.9

9 4F7/2 8 1.1195 1955.3 1697.1

¯ ¯ ¯ ¯ ¯ ¯

40 2F7/2 8 1.1317 7796.6 6541.1*

41 2F5/2 6 0.8589 8008.2 6631.6*
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2H9/2, which is in better agreement with the sequence of
terms for the 4f3 configurations of Pr3+ and Nd4+ known
from experiment.10

B. Crystal electric field (CEF) excitations in the disordered
phase„T.25 K…

In the disorderedsno quadrupole electron densityd phase
sT.25 Kd the electron density of the 5f3 configuration
adopts the cubicsOhd site symmetry. This density modulation
is induced by the cubic crystal electric field experienced by
three 5f electrons. In terms of the multipole intersite expan-
sion s2.8d it implies that, for a given Np sitenW, we treat 12
Np neighbors snW18=1–12d and 8 oxygen neighborssnW28
=1–8d in spherical approximation, i.e.,l8=0 andSL8snW8d re-
duces toY0

0=1/Î4p. The coefficientscL8, Eq. s2.15d, be-
come simple

c0sia8 ja8d =
1

Î4p
dsia8, ja8d. s3.5d

Here, we write 0 forL8;sl8=0, A1gd. At the central sitenW
we expand the CEF in terms of SAFsSL1

snWd, L1;sl ,A1gd,
whereA1g stands for the unit representation of the cubic site
groupOh. The selection rules for the coefficientscLsia , jad of
the f-f transitions imply that there remain only two nontrivial
functions SL1

with l =4 and l =6, which correspond to the
cubic harmonicsK4sVd andK6sVd. The multipole two-center
expansions2.8d becomes

V(RW snWd,RW 8snW8d) =
1

Î4p
o
L1

vL10snW,nW8; r,r8d SL1
snWd,

s3.6ad

where

vL10snW,nW8; r,r8d

=
1

Î4p
E dVsnWd E dV8snW8d

SL1
sn̂d

uRW snWd − RW 8snW8du
.

s3.6bd

Here, vL10snW ,nW8 ; r ,r8d has the same value for all 12 Np
neighborssnW18=1–12d, and a same value for all 8 oxygen
neighbors snW28=1–8d. As follows from Eq. s2.11d,
vL10snW ,nW8 ; r ,r8d is independent of r8. Equations2.22d then
can be written in the following form:

vL1

aa
0
a8a8snW − nW8d = vL1

aa
0 3 Qa8, s3.7d

where

vL1

aa
0 =E dr r2 Ra

2srdvL1 0snW,nW8; r,r”8d, s3.8ad

and

Qa8 =E dr8 r82 Ra8
2 sr8d. s3.8bd

Here, the integrations are taken over 0, r8,RMT, where
RMT is the radius of the muffin-tin sphere of neptunium or

oxygen.sThe influence of the interstitial region will be dis-
cussed later.d Qa8 refers to an electron at sitenW8 which inter-
acts with one of the three 5f electrons atnW. We then can
perform a summation over all electrons atnW8 and include
also in this term the interaction with the nucleus. This results
in replacingQa8 by eQMT in Eq. s3.7d, QMT ande being the
total charge inside the MT sphere and the electron charge
se=−1d, respectively. From Eq.s2.11d, it follows that

vL1

aa
0 = vL1 0snW,nW8;RMT,r”8d

ql
a

RMT
l , s3.9ad

wherel in the indexL1 is 4 or 6, and

ql
a =E dr8 r8 sl+2d Ra

2sr8d. s3.9bd

Therefore, the CEF operator for any neptunium sitesr
,RMT

Npd can be written explicitly as

VCF(RW snWd) = o
l=4,6

Bl Ssl,A1gdsn̂d S r

RMT
Np Dl

, s3.10ad

where

Bl = Bl
Np + Bl

O, s3.10bd

and

Bl
Np =

12
Î4p

Qeff
Np evL1 0snW,nW18;RMT

Np ,r”8d, s3.10cd

Bl
O =

8
Î4p

Qeff
O evL1 0snW,nW28;RMT

Np ,r”8d. s3.10dd

We quote all relevant parameters of CEF in Table III. As
given by Eq.s3.10ad, the CEF operatorVCF is a one-electron
quantity.21,22 CEF acts along with the Coulomb intrasite re-
pulsion, Eq.s3.4d. Therefore, the total Hamiltonian for the
disordered phase becomes

HdissnWd = Hintra + VCFsnWd. s3.11d

Although we have considered CEF from first principles,
there is still an ambiguity related to the charge distribution in
the interstitial region. A more rigorous treatment of the prob-
lem is given in Refs. 23 and 24. A careful consideration of
the problem based on the solution of a periodic Poisson’s

TABLE III. Calculated parameters of the CEF.vl
Np

0
Np

=vL1 0snW ,nW18 ;RMT
Np ,r”8d, nW =0 is the central Np site,nW18 is one of 12 Np

nearest neighbors.vl
Np

0
O=vL1 0snW ,nW28 ;RMT

Np ,r”8d, nW28 is one of six oxy-
gen neighbors.

Units l =4 l =6

vl
Np

0
O meV 2816.7 209.7

vl
Np

0
Np meV 226.37 26.190

ql
f / sRMT

Np dl 0.1592 0.0994

Bl
O/Qeff

O e K 23405.2 546.0

Bl
Np/Qeff

Np e K 2165.0 224.2
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equation leads to a renormalization of the charges inside the
MT spheres, Ref. 24. In other words, in Eqs.s3.10ad–s3.10dd
the effective charges for Np and O are given by

Qeff = QMT −
4pRMT

3

3
rIsKW = 0d − 4pRMT

2 o
KW Þ0

8
j1sKRMTd

K
rIsKW d,

s3.12d

whererIsKW d is the Fourier series expansion of the electron
density in the interstitial region;j l=1 is the spherical Bessel

function. rIsKW =0d is the average density in the interstitial
region, Qout/Vout, where Qout and Vout are the charge and
volume of the interstitial region, respectively.

The calculation ofQeff according to Eq.s3.12d is quite
laborious since it requires the evaluation of the Fourier co-

efficientsrIsKW d. Instead, below we consider two approxima-
tions to s3.12d. In the first approximation we assume that
Qeff

NpsId=QMT
Np andQeff

O sId=QMT
O , whereQMT

Np andQMT
O are the

total charges inside the MT spheres of neptunium and oxy-
gen. Here, the electron charge in the interstices is completely
ignored. In the second approximation we take

QeffsII d = QMT −
4pRMT

3

3
rIsKW = 0d. s3.13d

This expression corresponds to the homogeneous electron
density distribution in the interstitial region. However, the
modification of effective charges in this approximation is too
strong:Qeff

NpsId= +4.108ueu and Qeff
NpsII d= +5.337ueu for nep-

tunium, Qeff
O sId=−0.284ueu andQeff

O sII d= +0.945ueu for oxy-
gen. As was discussed in Ref. 2, the CEF splitting is overes-
timated in the second approximation. In reality the charge
density in interstices is highly inhomogeneous, concentrated
mainly in the proximity to oxygen and neptunium. This leads

to rIsKW Þ0dÞ0, and the last term in Eq.s3.12d acts in the
opposite direction, decreasingQeff backward toQMT values,
which correspond to the first approximation.

The exact calculation ofQeff according to Eq.s3.12d is
beyond the scope of the present study. Instead, we have stud-
ied the crystal field effects as a function ofQeff by introduc-
ing

Qeff
Npsxef fd = QMT

Np + xef f„Qeff
NpsII d − QMT

Np
…, s3.14ad

Qeff
O sxef fd = QMT

O + xef f„Qeff
O sII d − QMT

O
…, s3.14bd

where 0,xef f,1. DiagonalizingHdis, Eq. s3.11d, we have
found that 41 terms of 5f3 are split into 120 distinct sublevels
of G6, G7, andG8 symmetry of the cubic double-groupOh8. In
particular, two lowest atomic-like levels are split according
to the following scheme:

4I9/2 → G8 + G8 + G6, s3.15ad

4I11/2→ G8 + G7 + G6 + G8. s3.15bd

The resulting splittings and the dependence of CEF onxef f
are shown in Fig. 1. The splittings of two lowest terms of the
5f3 configuration, Eqs.s3.15ad and s3.15bd, is also given in
Tables IV and V forxef f=0 andxef f=0.5, respectively.

The most comprehensive study of the crystal field of the
5f3 configuration was performed by Amorettiet al., Ref. 20.
Comparing their results with ours, we obtain the following
relations connectingB4 andB6 with V4 andV6 used there:

B4 = 8Î12

7
V4, s3.16ad

B6 = 16Î8V6. s3.16bd

We observe that, for a realistic choice ofQeff, which corre-
sponds toxef f,0–0.5, the CEF splitting isa few times
smaller than the value of 55 meV considered for CEF exci-
tations in Ref. 20. Correspondingly, the calculated param-
etersB4 andB6 sTables IV and Vd are smaller. Notice that it
is not possible to relate the feature at 55 meV with the4I11/2
splittings because it is situated at much higher energy
,650 meV, Table II. Most likely, the experimental excita-
tions at 55 meV refer to the valence electrons delocalized on
the Np–O bonds, while the lowest CEF excitations of Np lie

FIG. 1. Splitting of the lowest4I9/2 terms of the 5f3 configura-
tion of Np in cubic crystal field, Eqs.s3.10ad–s3.10dd as a function
of the effective charges of neptunium and oxygen, Eqs.s3.14ad and
s3.14bd. Zero corresponds to the energy of the4I9/2 level of free Np
ion.

TABLE IV. CEF low energy spectrum and magnetic moments of
the 5f3 configuration of Np;xef f=0, De=7380.7 K. Calculated CEF
parametersB4=−288.1 K,B6=254.2 K, Eq.s3.10ad.

G Deg. sei −e1d sKd MzsmBd

4I9/2 G8 4 0 6s1.275, 1.429d
G8 4 20.5 6s0.517, 1.686d
G6 2 60.2 61.384

4I11/2 G6 2 De 61.778

G8 4 De+4.6 6s1.241, 2.120d
G7 2 De+6.3 61.775

G8 4 De+26.1 6s1.119, 3.835d
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at a smaller energy,6 meV, Tables IV and V.
Finally, we would like to note that our CEF calculation is

based on first principles, and in that respect it differs from
the others,20,25,26which use fitting from experiment to extract
the CEF parameters. There are also other technical differ-
ences. In contrast to Refs. 25 and 26 we do not assume that
the full momentumJ is a good quantum number, that allows
for a mixing of components belonging to differentJ. In Ref.
20 the basis was truncated to the first 11 low-lying levels. In
our approach we do not have these limitations.

C. Mean field and the structural phase transition at 25 k

Recent resonant x-ray scatteringsRXSd experiments at the
Np MIV andMV edges in NpO2 indicated an unexpected re-
sult: the phase transition of NpO2 is not isostructural.13 In the
low temperature phase a long-range order of Np electric qua-
drupoles was revealed by the growth of superlattice Bragg
peaks.13,27 The space symmetry of the ordered phase was
identified asPn3m.13 In real space thePn3m ordering is
characterized by four different sublattices of the simple cubic
structure. We label these sublattices which contain the sites
s0,0,0d , sa/2ds0,1,1d, sa/2ds1,0,1d, and sa/2ds1,1,0d by
hnWpj, p=1–4,respectively. The most significant feature of the
ordered phase is the existence of only one threefold axis of
symmetryC3 at each Np site which is also a cube diagonal.
The only quadrupole function compatible with the symmetry
lowering is Y2

0sV8d in the coordinate system where thez8
axis coincides with one of the threefold axesscube diago-
nalsd: f1 1 1g, f21, 21, 1g, f1, 21, 21g, and f21, 1, 21g.
Consequently, there are four such functions which are given
by28

SasVd =
1
Î3

(Y2
1ssVd + Y2

1csVd + Y2
2ssVd), s3.17ad

SbsVd =
1
Î3

(− Y2
1ssVd − Y2

1csVd + Y2
2ssVd), s3.17bd

ScsVd =
1
Î3

(Y2
1ssVd − Y2

1csVd − Y2
2ssVd), s3.17cd

SdsVd =
1
Î3

(− Y2
1ssVd + Y2

1csVd − Y2
2ssVd). s3.17dd

The real spherical harmonics16 Y2
1s, Y2

1c, Y2
2s belong to a

three-dimensional irreducible representationT2g of Oh. They
are proportional to the Cartesian componentsyz, zx, andxy.
The Pn3m structure is obtained whenSa corresponds to the
first sublatticeshnW1jd, Sb−hnW4j, Sc−hnW2j, andSd−hnW3j.28

Now, we consider the intersite quadrupole interactions
VQQsnW ,nW8d between a central Np sitessublatticehn1jd and its
12 nearest Np neighbors belonging to sublatticeshnp8j, p8
=2, 3, 4.fHere, we will not take into account the interactions
involving higher spherical harmonics because they are con-
siderably smaller, Eq.s2.11d.g This direct quadrupole-
quadrupole coupling can be calculated from first principles.
Such a problem for thePa3 structure has been considered in
Refs. 1 and 2, where it is shown that thePa3 spatial order of
quadrupoles gives an effective attraction between them. For
the Pn3m structure the direct interaction isrepulsive,28 and
we have to resort to an indirect coupling via oxygen-
mediated interaction as a driving force of the phase transi-
tion. The important fact which we exploit in this section is
that, irrespective of the nature of the effective Np-Np inter-
action, the mean field can be described by a general expres-
sion (3.24) below which simply reflects the rhombohedral
(trigonal) symmetry of the neptunium site.13,28

We start by deriving an effective mean field for the direct
electrostatic interaction between quadrupoles. Following
Ref. 2, one obtains from Eq.s2.21d the following expression
for the quadrupolar interaction operator between neptunium
sites atnW1 andnWp8:

VQ QsnW1,nWp8d = wf f r f
QsnW1d r f

QsnWp8d. s3.18d

Here,nW1P hn1j, nWp8P hnp8j, and the quadrupolar density op-
eratorr f

Q at sitenWp is given by

r f
QsnWd = o

I,J
uIl o

a

Psado
a=1

3

cpsia ja
ad p

b=1

2

dib j
b
akJu, s3.19d

where againa is a permutation ofj1
f , j2

f , j3
f transforming

them to a new order given byjk
a, k=1–3.Psad is the parity of

the permutation; the indexa stands for the interacting elec-
tron at the site.sThe second interacting electron belongs to a
neighboring Np site.d The othersnoninteractingd electrons
sb=1,2d at nW produce the product of the Kronecker delta
symbols. The quadrupolarf-f coefficients are defined as

cpsia jad = kiauSpu jal. s3.20d

There are four types of such coefficientssi.e., p=1–4d as
follows from Eqs. s3.17ad–s3.17dd. Finally, the interaction
constantwf f in Eq. s3.18d is given by

wf f = 1
3sg f f − 2a f fd. s3.21d

Here

g f f =E dr r2E dr8 r82 R f
2srd R f

2sr8d vL1L1
snW,nW8; r,r8d,

s3.22ad

TABLE V. CEF low energy spectrum and magnetic moments of
the 5f3 configuration of Np;xef f=0.5, De=7396.3 K. Calculated
CEF parametersB4=1905.7 K,B6=−66.5 K, Eq.s3.10ad.

G Deg. sei −e1d sKd MzsmBd

4I9/2 G6 2 0 61.383

G8 4 56.8 6s0.451, 2.077d
G8 4 164.9 6 s1.204, 2.333d

4I11/2 G8 4 De 6 s0.392, 3.862d
G7 2 De+28.6 61.777

G8 4 De+110.8 6s1.290, 2.845d
G6 2 De+132.6 61.785
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a f f =E dr r2E dr8 r82 R f
2srd R f

2sr8d vL2L2
snW,nW8; r,r8d,

s3.22bd

with vLLsnW ,nW8 ; r ,r8d defined by Eq. s2.9d, where nW
=s0,0,0d, nW8=sa/2ds0,1,1d and L1=sl =2, T2g,k=1d, L2

=sl =2, T2g,k=2d. The corresponding SAF isSL=Y2
1s. Using

the propertys2.11d, we rewriteg f f anda f f as

g f f =
q2

f

sRMT
Npd2 v1 1

Q QsRMT
Npd

q2
f

sRMT
Npd2 , s3.23ad

a f f =
q2

f

sRMT
Npd2 v2 2

Q QsRMT
Npd

q2
f

sRMT
Npd2 , s3.23bd

where the short notationvk k
Q QsRMT

Npd, k=1,2, stands for the
correspondingvLLsnW ,nW8 ; RMT

Np ,RMT
Npd, and the “quadrupole

charge”ql=2
f of 5f electron is given bys3.9bd.

In the mean-field approximation, after summing over 12
nearest neighbors belonging to three sublattices, we arrive at
the effective bilinear quadrupole-quadrupole operator

UQ QsnWpd = l f f kr f
Ql r f

QsnWpd, s3.24d

where for Pn3m the direct quadrupole-quadrupole interac-
tion is repulsive,l f f =4sg f f −2a f fd.0. The relevant calcu-
lated parameters are quoted in Table VI.sThe same expres-
sion holds forPa3, but in that case for the direct quadrupole
interaction l f f =4g f f ,0, which means attraction.d kr f

Ql
stands for an expectation value of the quadrupole operator
s3.19d. At zero temperature it is the quantum average

kr f
Ql = kIgsur f

QsnWpduIgsl, s3.25d

where uIgsl refers to the ground state of the full mean-field
Hamiltonian

HMFsnWd = UQ QsnWd + VCFsnWd + HintrasnWd. s3.26d

The intrasite part of the interactionsHintra is given by Eq.
s3.4d. For CEF we used the valuesxef f=0 and Qeff

Np=QMT
Np ,

Qeff
O =QMT

O . sAs we discussed in Sec. III B, this gives the
most realistic estimate for CEF.d If l f f ,0 then at zero tem-
perature the mean-field HamiltonianHMF has a ground state
with a nontrivial quadrupolar order parameter,kr f

QlÞ0. In
such a case the site symmetry becomes trigonalswith the
main point subgroupC3d and the fourfold degeneracy of the
former cubic quartet states is lifted

G8 → E + E, s3.27d

whereE stands for the twofold degenerate irreducible repre-
sentation ofC3. The statesG6 remain unsplit as a conse-
quence of the Kramers theorem,G6→E.

We now obtain a system of equations which can be solved
self-consistently. At first we introduce an averagekr f

Ql,
which defines the interactionss3.24d ands3.26d. In the space
of the 5f3 configurations364 state vectorsd, we diagonalize
the total HamiltonianHMF, Eq. s3.26d, and obtain the eigen-
vectorsuKl, K=1–364

HMFuKl = eKuKl, s3.28d

where the lowest value ofeK corresponds toK=1,2. This is
the Kramers doublet of the ground state. We then calculate
the quantities

r f
QsKd = kKur f

QsnWpduKl, s3.29d

which evaluate the quadrupolar moments of the statesK.
Next, we find an improved value forkr f

Ql which is r f
QsK

=1d=r f
QsK=2d, Eq. s3.25d. The procedure continues until the

input and output values forkr f
Ql converge. As a consequence

of symmetry the expectation valuekr f
Ql is independent of the

sublatticehnpj chosen for calculations, but the Hamiltonian
and eigenvectors do depend on the choice. This is because
the quadrupoles have different orientations for different sub-
lattices.

For nonzero temperatureT, the mean-field equation for
kr f

Ql becomes

kr f
Ql =

1

Z
o
K

r f
QsKd e−eK/T, s3.30ad

where

Z = o
K

e−eK/T. s3.30bd

The results of the calculations are quoted in Tables VII
and VIII, and in Figs. 2–4. We started by assumingl f f

=−1750.5 K, Table VI. The value is typical for the direct
quadrupole-quadrupole electrostatic interaction.fIn fact, it
corresponds to the direct quadrupolar attraction in thePa3
structure, i.e.,l f f =l f fsPn3md, Table VI.g With this value
we have found that the transition temperatureTQ is only 0.44
K. A typical dependence ofkr f

Ql is shown in Fig. 2. The
phase transition is of first order, with a discontinuity of the
order parameter amplitudekr f

Ql=−0.0075 atTQ. Comparing

TABLE VI. Calculated parameters of the mean field.

v11
QQsRMT

Np d v22
QQsRMT

Np d g f f a f f

4568.2 K 21442.6 K 437.6 K 2138.2 K

q2
f / sRMT

Np d2 l f fsPn3md l f fsPa3d

0.3095 2856 K 21750.5 K

TABLE VII. Mean-field strigonald splittings atT=0, lef f/l f f

=1. TQ=0.44 K, r0=−0.0205.

G Deg. sei −e1d sKd MzsmBd r f
Q

E 2 0 60.9464 20.0205

E 2 1.1 60.7962 0.0135

E 2 20.7 60.6406 20.0083

E 2 21.7 60.8428 0.0140

E 2 60.8 61.3840 0.0011
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the present calculation with that for cerium,2 we observe that
the low value ofTQ is due to a small quadrupolar suscepti-
bility of the ground state quartetG8, since the difference inl
is not that muchsfor ceriuml f f =−2241 Kd.

The calculated transition temperature is very small in
comparison with the experimental value of 25 K. We then
conclude that the structural phase transition can be explained
by including an indirect bilinear quadrupole couplingssuper-
exchange interaction29d. The microscopic consideration of
the superexchange interaction is beyond the scope of the
present work. Instead, we model it by increasing the value of
l f f. In such a casel f f becomes a phenomenological param-
eter which we denote aslef f. By changinglef f we change the
transition temperature as shown in Fig. 3. We have found
that the experimental value of 25 K is achieved for
lef f/l f f ,10, which indicates a substantial increase of the
effective bilinear coupling, Eq.s3.24d. The relevant param-
eters of such strong mean field are given in Table VIII.

Finally, we would like to mention that the mean-field cal-
culations have been done assuming that the CEF is weak,
i.e., xef f=0. Increasingxef f leads to an increase of the CEF
splittings, which results in a strong suppression of the tran-
sition temperatureTQ, Fig. 4. Notice that atxef fsG8→G6d
=0.241 the ground state changes to theG6 doublet, Fig. 1,
which is apparently unfavorable for the quadrupolar order.
With further increase ofxef f beyond thexef fsG8→G6d point

the transition temperature goes quickly to zero and the or-
dered phase disappears.

IV. FOUR-ELECTRON CONFIGURATIONS

As follows from the previous section, the model which
takes into account only the 5f3 configuration at each nep-
tunium site is not able to explain the disappearance of the
magnetic moments in the ordered phase at temperaturesT
,25 K. On the other hand, the charge distribution inside the
MT sphere centered at the neptunium nucleus indicates that
there is always approximately one valence electron instanta-
neously present along with the three localized 5f electrons,
Table I. Even if the electron is in thes-orbital state, it expe-
riences strong coupling with the 5f electrons via intrasites-
f transitions. Therefore, the excitation spectrum at each nep-
tunium site differs from that for 5f3 considered in Sec. III. In
the following, we model the couplings with the valence elec-
tron by considering 7s5f3, 7p5f3, and 6d5f3 instantaneous
configurations. Here, we will not study the mean field in

FIG. 3. The transition temperatureTQ as a function of the qua-
drupolar interaction constantlef f.

FIG. 4. The suppression of the transition temperatureTQ with
the increase of the CEF strength,xef f; see also Fig. 1 and Sec. III B;
lef f/l f f =10.

TABLE VIII. Mean-field strigonald splittings atT=0 with an
enhanced quadrupolar interaction constantlef f/l f f =10. TQ

=24.6 K, r0=−0.0563.

G Deg. sei −e1d sKd MzsmBd r f
Q

E 2 0 61.9211 20.0563

E 2 54.0 61.1723 20.0014

E 2 72.8 61.3684 20.0004

E 2 85.8 60.6211 0.0249

E 2 122.1 61.4893 0.0256

FIG. 2. A typical evolution of the order parameter amplitude
kr f

Ql with temperature;r0= ukr f
QluT=0, TQ is the transition temp-

erature.
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such detail as for the 5f3 configuration.Our main objective is
to demonstrate that the ground state can be nonmagnetic and
separated from the magnetic excitations by an energy gap
larger than 25 K.This means that atT,25 K, the magnetic
moments are ineffective.

A. 7s5f 3 configuration

The 7s5f3 configuration has been considered in detail in
Sec. II. We are working here in the space of 728 state vectors
uIl= ui1

f , i2
f , i3

f ; isl. The 5f states are coupled to twos states
through the f-s transitions accompanied by the multipole
Coulomb interactions withl =3. The strength of this interac-
tion was estimated from the LDA calculation of a Np atom,
Eq. s2.18bd

v3
fs-sf = 1.313 eV. s4.1d

The electron energy spectrum of the 7s5f3 configuration
consists of 82 distinct levels; see Table IX. In the cubic crys-
tal field the two lowest levelss5I4 and5I5d are split as quoted
in Table X. Notice that the ground state is nonmagnetic.
However, at higher temperaturessT.25 Kd two low- lying,
excitations ofT2 and T1 symmetry contribute to the Curie
law for the magnetic susceptibility.30

In the ordered phase the local symmetry of the Np site
changes toD3d.

13,28As we discussed in Sec. III C the mean
field can be expanded in a multipole series and, from sym-

metry, it follows that the strongest interaction is of quadru-
polar type

UQ QsnWpd = − L f r f
QsnWpd, s4.2d

whereL f =l f fkr f
Ql fcompare withs3.24dg. The quadrupolar

operator r f
QsnWpd belonging to the sublatticehnpj is given

again by Eq.s3.19d with the corresponding orientational
functionSp, Eqs.s3.17ad–s3.17dd. The only difference is that
thes electron produces an additional Kronecker symbol, i.e.,
in Eq. s3.19d b=1–3.Notice that both CEF, Eq.s3.10ad, and
the mean field, Eq.s4.2d, act only on the 5f electrons. Taking
L f =5252 K, we diagonalized the full Hamiltonian

HMFsnWd = UQ QsnWd + VCFsnWd + HintrasnWd. s4.3d

The resultant electronic spectrum is shown in Table XI. We
observe that the ground state is nonmagnetic, while the first
magnetic excitationsEd does not contribute to the magnetic
susceptibility ifT,25 K.

B. 7p5f 3 configuration

In the case of the 7p5f3 configuration, we constructs14
313312/3!d36=2184 basis vectors

uIl = ui1
f ,i2

f ,i3
f ; ipl. s4.4d

As before, i f refers to a 5f electron, ip=sk,szd to the 7p
electronsk is its orbital part,k=1–3, andsz is the spin partd.

The interaction between 5f electrons was described in de-
tail earlier. In addition,p-p and f-f transitions lead to intra-
site multipole interactions with thel =0 andl =2 components;
f-p transitions give the Coulomb multipole couplings with
l =2 andl =4. The relevant Slater parameters were extracted
from the radial dependences of a Np ion

v2
fp-pf = 1.442, v4

fp-pf = 0.739, v2
f f−pp = 5.237 sin eVd.

s4.5d

Also, the p electron experiences the spin-orbit interaction
with zp=1.2795 eV.

First, we calculated the electron spectrum of the free ion,
Hintra and obtained 242 distinct levels, Table XII. In the cubic
crystal the5K4 and5I4 levels are split as quoted in Table XIII.
sThe procedure of CEF effects is outlined in Sec. III B; CEF
does not act on thep electron.d Notice that the ground state
now is a magnetic triplet of theT2 symmetry, which together

TABLE IX. The five lowest and the highest eigenvalue of 7s5f3;
g is the Landé factor.

Term Deg. g smBd E

1 5I4 9 0.6266 0

2 5I5 11 0.8983 196.5

3 5I6 13 1.0670 737.2

4 5F5 11 0.8700 814.4

5 5I7 15 1.1691 1245.1

¯ ¯ ¯ ¯ ¯

82 1F0 7 1.0172 8229.5

TABLE X. CEF low energy spectrum and magnetic moments of
the 7s5f3 configuration of Np,De=2293.2 K. CEF parametersB4

=−288.1 K,B6=254.2 K;xef f=0.

G Deg. sei −e1d sKd MzsmBd

5I4 E 2 0 0; 0

T2 3 15.6 61.5671; 0

T1 3 25.1 60.2946; 0

A 1 61.6 0

5I5 T1 3 De 62.2435; 0

E 2 De+4.1 0; 0

T2 3 De+6.5 62.2393; 0

T1 3 De+20.3 62.7113; 0

TABLE XI. Mean-field strigonald splittings of 7s5f3 at T=0,
L f =5252 K.

G Deg. sei −e1d sKd MzsmBd

A 1 0 0

E 2 26.0 60.3467

E 2 124.1 60.6786

A 1 301.8 0

A 1 330.1 0

E 2 516.5 61.4769
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with two other magneticT1 excitations, Table XIII, gives the
Curie law for the magnetic susceptibility.

At Tc=25 K the structural phase transition occurs and the
symmetry of the Np sites is reduced.13 This symmetry
change is accompanied by lifting degeneracies of some cubic
levels.28 In particular, the ground-stateT2 triplet is split into
a doublet and a single level as demonstrated in Table XIV.
The mean field is approximated by its quadrupolar electric
part

UQ QsnW id = − L f r f
QsnW id − Lp rp

QsnW id, s4.6d

where

L f = l f fkr f
Ql + l f pkrp

Ql, s4.7ad

Lp = lp fkr f
Ql + lp pkrp

Ql. s4.7bd

The following parameters of the interaction were assumed:

q2
p

sRMT
Np d2 = 0.1604, L f = 6612 K, Lp = 3426 K.

s4.8d

Since the charge density expansion of thep electron has
quadrupolar components,cksipj pd=kipuSku j plÞ0 fSk are
given by Eqs.s3.17ad–s3.17ddg, the mean-field expansion
s4.6d includes the quadrupolar projection onp states

rp
QsnWkd = o

I,J
uIl o

a

Psadcksipj pd p
b=1

3

di
b
f ja

b
f kJu. s4.9d

Here,a is a permutation ofj1
f , j2

f , j3
f to jab

f , b=1–3; Psad is
the parity of the permutation. The quadrupolar operator for
the 5f electrons is given again by Eq.s3.19d, where the index
b comprises the additionalp electron, i.e.,b=1–3.

Notice that in the ordered phase the ground-state level is
single and nonmagnetic, Table XIV. This mechanism can
explain the loss of magnetic moments because the magnetic
excitations of the 7p5f3 configuration lie too high in energy.

C. 6d5f 3 configuration

The basis vectors here are

uIl = ui1
f ,i2

f ,i3
f ; idl, s4.10d

where indexi f stands for 5f statessi f =1–14d, while the index
id=sk,szd refers to fived orbitals and the spin projectionsz.
Thus, id=1–10, and in total there are 3640 nonequivalent
basis vectorsuIl.

We start by considering the intrasite interactionsHintra.
Here, in addition tof-f interactions, we distinguish two
groups. The first group arises betweend-d and f-f transi-
tions. It is described by the multipole Coulomb repulsion
with the l =0, 2 and 4 angular componentssSAFsd. The sec-
ond group is due to thef-d and d-f transitions. The corre-
sponding multipole interactions are withl =1, 3, and 5. The
relevant parameters were extracted from the LDA calculation
of the Np ion in the 6d5f3 configuration

v1
fd−df = 11.322, v3

fd−df = 3.701, v5
fd−df = 1.794,

v2
f f−dd = 11.289, v4

f f−dd = 3.482 sin eVd,

zd = 0.3497 eV. s4.11d

The parameters for thef-f interactions were kept unchanged.
We then diagonalized the 364033640 matrix ofkI uHintrauJl
and obtained 383 distinct levels. The five lowest and the
highest levels are quoted in Table XV. The CEF splittings of
the lowest5L6 and 5K5 levels are given in Table XVI. It
should be noted that, unlike before, the CEF operator acts
not only on the 5f electrons but also on the 6d one2

TABLE XIV. Mean-field strigonald splittings of 7p5f3 at T=0;
L f =6612 K,Lp=3426 K.

G Deg. sei −e1d sKd MzsmBd

A 1 0 0

E 2 24.6 60.4171

E 2 105.8 60.8134

A 1 246.4 0

A 1 272.6 0

E 2 480.7 61.7473

TABLE XII. The five lowest and the highest eigenvalue of
7p5f3; g is the Landé factor.

Term Deg. g smBd E

1 5K5 11 0.7430 0

2 5I4 9 0.7459 154.5

3 5K6 13 0.9450 689.7

4 5I5 11 0.9875 756.2

5 5G2 5 0.5948 1248.1

¯ ¯ ¯ ¯ ¯

242 3P1 3 0.5031 10515.7

TABLE XIII. CEF low energy spectrum and magnetic moments
of the 7p5f3 configuration of Np,De=1789.1 K. CEF parameters
B4=−288.1 K,B6=254.2 K;xef f=0.

G Deg. sei −e1d sKd MzsmBd

5K5 T2 3 0 61.8525; 0

T1 3 3.2 61.7788; 0

E 2 16.7 0; 0

T1 3 45.0 62.1534; 0

5I4 E 2 De 0; 0

T2 3 De+14.8 61.8645; 0

T1 3 De+24.8 60.3655; 0

A 1 De+59.1 0
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UCEFsnWd = B4
f r f

4snWd + B6
f r f

6snWd + B4
d rd

4snWd. s4.12d

Here, r f
l snWd, l =4,6, andrd

4snWd are cubic projectors on thef
andd states, respectively, given by

r f
l snWd = o

I,J
uIlo

a

Psado
a=1

3

kia
f uKlu jaa

f lp
b=1

3

dib j
b
akJu,

s4.13ad

rd
4snWd = o

I,J
uIlo

a

PsadkiduK4u jadlp
b=1

3

di
b
f jb

afkJu,

s4.13bd

whereKlsVd refers to the cubic harmonics withl =4 and 6.
Here, we keep the same notations as beforefEqs.s3.19d and
s4.9dg, i.e., the permutationa transforms the indicesj1

f , j2
f , j3

f

to jak
f , k=1–3. Thepermutations which interchange thed

and f indices are excluded because they give zero contribu-
tion to s4.13ad ands4.13bd. The parameterB4

d was calculated
by the method described in Sec. III B. Forxef f=0, we have
found that

q4
d

sRMT
Np d4 = 0.1287, B4

d = − 232.7 K. s4.14d

Notice that for the ground state the CEF gives a nonmagnetic
single level, Table XVI, but there are two low-lying magnetic
levelssT2 andT1d at 9.7 and 15.6 K, which contribute to the
Curie law of the magnetic susceptibility atT.25 K.

Below 25 K the local symmetry of Np is lowered.13 The
mean field is given by

UQQsnWpd = − L f r f
QsnWpd − Ld rd

QsnWpd, s4.15d

where

L f = l f fkr f
Ql + l f dkrd

Ql, s4.16ad

Ld = ld fkr f
Ql + ld dkrd

Ql. s4.16bd

Here again,r f
QsnWd and rd

QsnWd are quadrupolar projection on
the f and d states, respectively. They are given by expres-
sions similar tos4.13ad ands4.13bd, where we replaceKlsn̂pd
by Sp, Eqs.s3.17ad–s3.17dd, for four sublatticeshnpj=1–4 of
Pn3m, Sec. III C.fCompare also withs3.19d ands4.9d.g Be-
low we approximated the parameters of this interaction by

q2
d

sRMT
Np d2 = 0.1713, L f = 6220 K, Ld = 3442 K.

s4.17d

We then diagonalized the whole HamiltonianHMF fHMF

=UQ QsnWd+VCF+Hintrag and obtained the lowest energy lev-
els quoted in Table XVII. Notice that now the first magnetic
excitation ofE symmetry is separated from the nonmagnetic
ground state by an energy gap of,33 K, which implies
again disappearance of the Curie law for the magnetic sus-
ceptibility of the ordered phasesT,25Kd.

V. DISCUSSION AND CONCLUSIONS

We have presented a multireferencesmany Slater determi-
nantd approach to crystal-and mean field based on the tech-
nique of expanding the Coulomb repulsion between electrons
in a multipolar series, Sec. II. The method is a genuine
many-electron approach which requires a numerical classifi-
cation of the permutations of the electrons on the same crys-
tal site and a calculation of the Coulomb repulsion between
all pairs. Thus, the fundamental group of electron

TABLE XV. The five lowest and the highest eigenvalue of
6d5f3; g is the Landé factor.

Term Deg. g smBd E

1 5L6 13 0.7530 0

2 5K5 11 0.7201 167.2

3 5L7 15 0.9232 667.9

4 5K6 13 0.9269 767.2

5 3D3 7 0.6800 886.9

¯ ¯ ¯ ¯ ¯

383 3P1 3 1.0004 13116.4

TABLE XVI. CEF low energy spectrum and magnetic moments
of the 6d5f3 configuration of Np,De=1949.5 K. CEF parameters
B4=−288.1 K,B6=254.2 K, andB4

d=−232.7 K;xef f=0.

G Deg. sei −e1d sKd MzsmBd

5L6 A 1 0 0

T2 3 9.7 60.1809; 0

A 1 12.6 0

T1 3 15.6 60.3772; 0

E 2 36.4 0; 0

T2 3 43.6 62.0637; 0

5K5 T1 3 De 61.7253; 0

E 2 De+3.1 0; 0

T2 3 De+21.1 61.8006; 0

T1 3 De+25.3 62.0883; 0

TABLE XVII. Mean-field strigonald splittings of 6d5f3 at T=0;
L f =6220 K,Ld=3442 K.

G Deg. sei−e1d sKd MzsmBd

A 1 0 0

E 2 32.8 60.4362

E 2 136.6 60.8797

A 1 311.2 0

A 1 337.0 0

E 2 601.2 61.7673
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permutations31 is explicitly taken into account.
In the disordered phase we considered the Hamiltonian

which includes the crystal electric fieldsCEFd effects and the
intrasite Coulomb repulsion responsible for Hund’s rules on
equal footing, Sec. III. It is shown that the crystal field is
reduced to a single particle potential.The crystal electric
field levels above the ground state are in fact low-lying local
excitations of the electron complex.The typical splittings
there are of the order of 10 K and thus the electron spectrum
is very sensitive to the crystal symmetry. An effective bilin-
ear quadrupole-quadrupole Coulomb repulsion treated in the
paper in the mean-field approximation competes with the
crystal field and lowers the crystal symmetry at low tempera-
ture. The influence of both interactionssi.e., crystal field po-
tential and the bilinear couplingd on the transition tempera-
ture has been investigated in detail for thef3 configuration,
Sec. III and Figs. 2–4.

Disappearance of magnetic moments ina-Ce and NpO2
gives rise to a question of correlations between structural and
magnetic properties in solids, which we have investigated
theoretically in our model of theg-a phase transition in
Ce.1,2 The loss of magnetic moments in NpO2 at 25 K ac-
companied by a small volume contractionf0.018% sRef.
27dg has been known for many years, and was ascribed to an
“isostructural” phase transition. Recently, however, it turned
out that the phase change in NpO2 is a structural one, and the
symmetry of the low temperature phase isPn3m. In this
respect it is interesting to notice that, in our model for Ce, we
have predicted thePa3 space symmetry for the ordereda
phase,1,2 which is very close to thePn3m structure reported
for NpO2 in Ref. 13. In particular, the active irreducible rep-
resentation also belongs to theX point of the Brillouin zone.

In this paper we have pursued a simple idea that the sym-
metry lowering produces a splitting of the many-electron
single site excitation spectrum, which can explain the differ-
ence in the behavior of the magnetic susceptibility and the
loss of the magnetic moments. Before, such an idea was
expressed by Friedtet al., Ref. 32. However, Friedtet al.
applied it to the model of threef electrons. In this case the
three f electrons cannot form a singlet state no matter what
symmetry reduction occurs at low temperatures. The impor-
tant element of the present study is that we have found a
partial admixture of a conduction electron to the localizedf
electrons. This fact is supported by our band structure calcu-
lation sSec. II Ad which indicates that,besides the three lo-
calized5f electrons, there is always approximately one con-
duction electron at each Np site.This changes the effective
instantaneous configuration from the three-electron 5f3 to a
four-electron ones7s5f3, 7p5f3, or 6d5f3d and presents a
possibility to obtain a nonmagnetic ground state without in-
voking the concept of the octupole order parameter.33 From
this point of view it represents an alternative to the latter, and
we believe that both approaches deserves a thorough experi-
mental consideration and verification. A four-electron com-
plex at the neptunium site can lead to a nonmagnetic ground
state separated from the magnetic excitations by an energy
gap ,25 K, Sec. IV. Perhaps the most clear example is the
7p5f3 configurationsTables XIII and XIVd. In the disordered
phasesFm3m space symmetryd the ground state is a triplet
sTable XIIId. The magnetic moments of the ground level are

±1.8525mB and 0. The first excited state located only at 3.2
K above the ground state is also magnetics±1.7788; 0mBd.
In the orderedsPn3md phase the ground state is a singlet
sTable XIVd with zero magnetic moment. The first excited
state is magnetics±0.4171mBd, but now it lies at 24.6 K
above the ground level. That means that at temperatures be-
low ,25 K the first excited state is not populated and thus
there are no effective magnetic moments at neptunium sites.

If we apply the present model to UO2, then at each ura-
nium site one finds two localizedf electrons and approxi-
mately one conduction electron. In total, there will be ap-
proximately three electrons. It is not possible to construct a
singlet state from three electrons. Therefore, the local mo-
ment will be omnipresent at low temperatures, which ac-
counts for the magnetic behavior of UO2 in accordance with
the experiment.34 This gives some credit to the presented
model, although a nonmagnetic ground state of PuO2 sRef.
19d requires additional consideration.

The general idea for the loss of magnetic moments to
some extent is similar to the one suggested by models of
Kondo and Anderson and often referred to as the Kondo
effect.11 Notice, however, that here we are dealing with the
intrasite interactions treated on theab initio level. In particu-
lar, we replace the Anderson hybridization,8 which is linear
in terms of creation/annihilation operators for valence and
localized electrons, by the Coulomb intrasite repulsion,
which being a density-density coupling isbilinear in terms
of these operators. Another important theoretical ingredient
of our model is the symmetry lowering which modifies the
excitation spectrum of the electron system at low tempera-
tures. This part is absent in the Kondo mechanism. The pre-
sented picture of coupling between localized and delocalized
electrons on the same site is close to the initial idea of Zener,
who considered Hund’s rules responsible for the coupling.9

CEF and mean field have been objects of theoretical in-
terest for many years,21,22,26,35,36and we would like to men-
tion here some important relations between our model and
other approaches. We have shown that CEF effects can be
perceived as a first meaningful term of the intersite multipole
expansion, when all neighbors of a neptunium site are con-
sidered in the spherical approximationsl8=0d. It is then a
single particle potential.21,22The intersite nonspherical terms
are also included in the full potentialsFPd electron band
structure calculations like FP-LMTOslinear muffin-tin or-
bital methodd and FP-LAPWslinear augmented plane-wave
methodd.4 Therefore, in principle one could say that the CEF
effects are equivalent to the full potential treatment.23,24

However, there are two very important caveats here. First, in
the band structure calculations the nonspherical terms of the
potential apply to itinerant electrons in the ground state,
while CEF effects are considered usually for localized elec-
trons in the ground andexcitedstates. The second and more
important remark is that practically all band structure calcu-
lations are based on a single determinant approximation.
This intrinsic feature does not allow one to describe the in-
trasite interactions fully. In particular, the atomic term struc-
ture and Hund’s rules are excluded from the consideration.
This shortcoming does not apply to our treatment, which is
based on a many-determinantsmultireferenced approach. For
the intrasite part of interactions our model is very close to the
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scheme described by Condon and Shortley for the electron
spectra of atoms and ions, although there are some unimpor-
tant differences.

The main approximation of our approach is the choice of
basis and electronic configuration. No additional approxima-
tions used sometimes for crystal field calculations are made.
This distinguishes our approach from Stevens’,26 where the
CEF is expressed in terms of equivalent operatorsJx, Jy, and
Jz. The latter approach, as well as the work of Lea, Leask,
and Wolf for cubic CEFsRef. 25d based on it, are justified
only if J is a good quantum number. In our approach this
condition is not necessary, and indeed a mixture of severalJ
values is allowed. Notice also that the approach of Stevens
starts with the symmetry arguments, while the interactions
are introduced later in a phenomenological manner.

However, the present calculation scheme does not take
into account chemical bonding in an intrinsic way. Therefore,
further development of the method should be focused on this
problem.
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APPENDIX A: CORRECTION OF SLATER INTEGRALS
FOR Np

Since the experimental data on the energy splittings of the
4f3 configuration of Pr3+ and Nd4+ are available from the
atomic database of NIST, Ref. 10, while there is no such
information for 5f3, we have performed calculations of
vl

F-F sl =2,4,6d, Eq. s2.18ad, by using the radial dependence
of R f obtained from LDA calculations of atoms. After this
we diagonalized the Hamiltonian of the free ionsVs3d+Hsod
and compared our calculated spectra with the experimental
ones. We have noticed that the comparison is improvedsthe
sequence of terms corresponds to the experimental oned if we
reducev2

F-F andv6
F-F by a factor of 0.75 while keepingv4

F-F

almost the samesfactor of 0.975d. Therefore, we have used
the same scale factors for Np in NpO2 and obtained param-
eters given by Eq.s3.3d.
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