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symmetry lowering, and loss of magnetic moments
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A review of the technique of multipole expansion of the Coulomb interaction for a few electrons is pre-
sented. The correlation effects described by this multireference approach are beyond the methods based on a
single determinantal wave functiofstandard electron band structure calculation and molecular orbital
method. Starting with the Coulomb law, we use the technique of multipole expansion to calculate the crystal
electric field, mean field, and symmetry lowering for a number of many-electron configuréitipiss®, pfe,
anddf®). We consider these configurations as very relevant for a model wherefteteetrons are localized
and the fourth electron is delocalized and can be expanded locadly i+, d-states in the spirit of the tight
binding model. Prompted by the ideas of the double exchange, we study the intrasite multipole interaction,
which couples localized electroii§®) to delocalized ones on the same crystal site. We show that this interac-
tion may be responsible for an effective loss of magnetic moments when a suitable symmetry lowering takes
place. The present approach can be considered as a microscopic foundation of Kondo demagnetization when
the loss of magnetic moments occurs together with a structural phase transition. The approach may be relevant
for cerium and Np@.
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[. INTRODUCTION scheme without any correlation effects. Correlations appear
only if one takes into account several Slater determinants.
Recently, a new technique of multipole expansion of theSuch a calculation scheme is called configuration interaction
Coulomb interaction was presented in a number of(Cl) or, more precise, multireference approach.
publications'~2 First it was applied to a model of cerium The multipole Coulomb expansion, on the other hand, re-
with only one 4 electron, which feels the Coulomb repul- quires many Slater determinahtgmultireference treatment
sion from neighboring electrodsLater, it was generalized and, from this point of view, it represents a genuine many-
for the case of a #d model where the # electron is electron method. It also provides a unified description of the
strongly coupled with a delocalizedi%lectron? The main  crystal field effects and the atomic term splittings. The intra-
reason for introducing such models is that, despite progressite Coulomb repulsion, which is responsible for Hund’s
in the field of electron band structure calculatidrisinda-  rules, is included on equal footing with the spin-orbit cou-
mental important intrasite correlations giving rise to atomicpling, and the crystal field effects. For a single site the tech-
term splittings are routinely ignorédThe intrasite correla- nique is equivalent to the classical description of atomic
tions are typical for atoms with open electron shells. Wherterms® Moreover, the model calculations of multiplet spectra
an atom has two or more valence electrons on orbitally deef the Gy, molecular ion based on the multipole expandion
generate state@like d- or f-), its energy spectrum can be are closé to a sophisticated and advanced complete active
very complex, reflecting the electronic degrees of free@lom.space self-consistent-fielCASSCH method?
There exist empirical observations known as Hund’s rules, In the present work we develop and accomplish the tech-
which prescribe the occupation of the orbitals, but those araique of multipole Coulomb interactions for the case of few
just consequences of the atomic theory of many-electroelectrons. Another motivation is to clarify the microscopic
states formulated by Condon and Shortley long adte foundation of the intrasite coupling between localized and
real driving force behind the term splitting is the Coulomb conduction electrons. Such an interaction is often referred to
repulsion of the valence electrons. In many atoms the splitas the Anderson hybridizatidhHowever, the coupling was
ting between the highest and the lowest electron levels is ofiscussed already by Zener 10 years eatligener consid-
an order of few electronvolts, which is of the same magni-ered the coupling between an incompleteshell and the
tude as the electron band effects. Therefore, the full considsonduction electrons, and concluded that, in accordance with
eration of intrasite interactions should be a necessary ingrédund’s rules, it tends to align the spins in a ferromagnetic
dient of a many-electron theory aiming to capture thesemanner.(This is the third principle of his double-exchange
missed correlations. approact?) Since the multipole Coulomb interactions offer a
As was mentioned befofethe failure of the standard microscopic basis for Hund’s rules and can even describe the
band structure approach to describe such effects is rathexceptions to them for a number of eleméniike atomic
serious. The band structure calculation assumes a soluti@erium with thelG4 ground stat¥), we can apply the tech-
with only one Slater determinant and one electronic configunique to derive the intrasite coupling from the Coulomb re-
ration. From a quantum-chemical viewpoint this picture cor-pulsion, i.e., from first principles. Depending on the interplay
responds to a single determinant Hartree-Fock calculatiobetween the crystal symmetry and energy splittings, the out-
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come of this coupling may differ. As was shown by Zener, TABLE I. Angular-momentum-decomposégartia) electronic
the coupling can lead to a ferromagnetic or antiferromagnetighargesQf* and total charge®” inside neptunium and oxygen MT
ground staté. In the following we will demonstrate that it spheres and in the interstitial regidAPW calculations; see Ref. 4
also can be the cause for a nonmagnetic ground ¢tage  for details and definitions Q\P=-(2Q°+Q).

so-called Kondo effeét). We consider this mechanism of
demagnetization as a candidate for fhe a phase transition A Np o Interstices/unit
in cerium? and for the symmetry loweringm3m— Pn3m

A
in neptunium dioxidé3 Q,i 0.04% 0.02% o
The paper is organized as follows. In Sec. Il we describe Qg 0.40% 43l T
our method for treating local electron configurations. Next Qa 0.26% 0.04& T
(Sec. 1) we examine thoroughly the case of three localized Qf 2.18% 0.01% oo
f electrons. In Sec. IV we generalize tiiemodel by includ- o +4.108 € -0.284¢| -3.540 €|

ing the multipole interactions with a valence electron which

is present instantaneously on the same site. We show that, in

the framework of this extended model, the disappearance d$¢ approximately one conduction electron present inside the

the magnetic moments can be understood and ascribed to thep MT sphere. Therefore, the localize@=onfiguration of

trigonal symmetry lowering. Our conclusions are summadNp cannot be considered separately from this valence elec-

rized in Sec. V. tron, which can be of &, 7p-, or 6d-type. The instantaneous
confisguration at the neptunium site becomssf?, 7p5f3, or
6d5f°.

II. MANY-ELECTRON CALCULATION In all cases this additional electron experiences a strong

In this section we describe in detail how we construct theCoulomb repulsion with the three localized partners. This
basis consisting of many determinantal wave functions for anteraction is not fully accounted for by the band structure
many-electron system and how we calculate the relevant mé&alculations because it requires a multideterminant treatment
trix elements. As a model system we consider Np@th or configuration interactionCl).? Therefore, we have to fol-
three localized & electrons at the neptunium site, although 0w @ different route; below, we study the electron spectrum
the technique is general and can be applied to other casé4Sing the multipole expansion of electronic densities.

First, we perform a band structure calculation in order to
determine the conduction electron charge distribution in the B. Many-electron basis states

muffin-tin (MT) sphere around Np. Subsequently, we apply . . .
the configuration interaction method to treat the many- ©OUr method of multipole expansion of the Coulomb inter-

electron system consisting of the localizef} Blectrons and ~ action has been used befdré Here, we formulate it in de-
the conduction electron in the MT sphere. tail for the sf® configuration following Refs. 2 and 3. In Sec.

Il we deal with the 5% configuration, which is easily ob-
tained fromsf by omitting ones electron. In Sec. IV we
A. Electron band structure calculation consider 85f3, 7p5f3, and &I5f2 configurations. For the lat-

We have started by performing an electron band structurfe! tWo cases we will describe the important differences with
calculation of NpQ using our linear augmented plane-wave S'- L .
(LAPW) codel The calculation has been done assuming the _ \We start by considering a face-centered cufxic) crystal
muffin-tin (MT) shape of the one-electron potential and the®f N Np atoms. Each atomic site possesses anand three
Barth-Hedin expression for exchanffewhich is a variant of ~ Of electrons. The position vector of an electron near a crystal
the local density approximatiof.DA). The equal MT radii lattice siten is given by
RW=2.2206 andR{;=2.2206 in atomic unitga.u) were s ..
chosen for Np and O, with the cubic lattice constant R(R) = X() + (). (2.7)
- 27 H H -
=10.2567 a.u(or 5.4276 A.?" The MT potential and density Here,X(f) is the lattice vector, which specifies the centers of

of Np and O have been obtained self-consistently using the atomsN . ; ;

. . . p nuclej on a rigid fcc lattice. The radius vector
!_APW .baS|s of~300 functlo'ns on a 20-point mesh of the F(fi) is given in polar coordinates Hy(fi), (F)], wherer is
irreducible part of the Brillouin zone. The threé &lectrons the length and2=(©,¢) stands for the polar angles. We

of Np were treated as core states, which adjust self; . . N :
consistently to the conduction electron density. label the basis ket vectors at the lattice gitdy a single

As a result of the calculation we obtained that Np©an 'nfd(.afx.fl_ _cs)r, alternatively, by four one-electron indices
insulator, with the energy gapE=0.789 eV. The width of (i1.12,13; 19)
the occupied electron band below the Fermi levelEis IDa=i%,i% k9. (2.2)
—-Eg=5.953 eV. The spin-orbit splitting betweerf;5 and
5f, one-electron states i§;=0.983 eV. The main goal of The indexi’=(mf,s) stands for the orbitailm'=1-7) and
the calculation, however, was the electron charge density dispin projection(s,=+1/2) quantum numbers of onkelec-
tribution inside the neptunium MT sphere. The calculatedron. Therefore, there are 14 states which we labeli'by
partial charges of different angular symmetiy=0-3) are  =1-14. Two states of ths electron are labeled biy=1,2.
quoted in Table I. An important result is that on average ther&he many-electron basis wave functions are
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° . Sy Su(A)
<F1!F2'F3'F4|I>ﬁ=fi_2 P@IT (ilida- (Fali®s, vaa (NN r,r’) :fdQ(ﬁ)fdQ’(n’) f+
YNy a t=1 IR(A) = R'(A")]
2.3 (2.9

wherea stands for a permutation of four electrons, the factorthe SAFs are linear combinations of spherical harmonics
P(a)=+1 takes into account the parity of the permutation  and transform as irreducible representations of a site point
N, is the number of the permutations, and group; see Ref. 16. The indeXx stands for(l,7), with 7
N o\l f =(I", u,k). Here,| accounts for the angular dependence of
(i =Re(r(A)(A[I"), (243 e multipolar expansior; denotes an irreducible represen-

tation (in the present case the group @,), u labels the
(F'i%=Ryr" (M)A'[i%). (2.4b  representations that occur more than once, ladenotes the
rows of a given representation.

The intrasite case correspondsien’. The interaction
function v ,/(r,r")=va, (A=A"; r,r’) then becomes par-
ticularly simple

Here,R; and R are the radial components of thé &nd &
electrons, respectivelyd stands forQ(n). The 5 spin-
orbitals can be written as

(Al = (Plmp) (7). @9 i

rI

Here, ug is the spin function(s=+). The f-orbital parts, vanr(rr’) = (r(|_f1))2|_+15AAu (2.10
(h|m;), are expressed in terms of spherical harmonics g
Y™(Q)=(A|l,m). We find it convenient to work with real wherer_=maxr,r’), r-=min(r,r’) and §,,+=8,, .. The
spherical harmonié8 Y7, wherer=0, (m,c) or (m,s). last expression is also site independent.

The order of indices if2.2) is important. For example, as There is no simple analytical expression for the intersite
follows from the dynamical equivalence of the electrons, thecasei# n’.*” The intersite multipole interactions are aniso-
state|i!,i5,i,il) can be reduced ! ,i5,if;i% by permuting tropic and, for practical purposes, it is important to use the

the third and the fourth electrons, i.e., following dependencé’

T TR OWNTY I Y PYNE

11,15,1%,12) = = |iq,15,12; 1), 2.6 . r)'(r

lii2i%i3) = = lig,iziz; % (2.6) oan(RA 1) ~ = ()E ) —. (2.11
and so on. To describe the same quantum state we will use ‘X(ﬁ) —X(ﬁ’)"*' 1

the basis vector§2.2) and apply the permutation la2.6)
when needed. Alternatively, one can use the corresponding
Slater determinants for the four-electron wave functions, Eq. D. Intrasite matrix elements

(2.3). However, the permutation relations of the type of EQ.  kor the Coulomb interaction between four electronsa

(2.6) are more efficient for our purposes. Excluding equiva-ggme site’rwe have a sum of six two-body terms
lent states, we find onlgl4x 13X 12/3!) X 2=728 indepen-

dent functions, or determinants, fos5t%. (These are 364, 1 204 o

2184, and 3640 for B, 7p5f3, 6d5f3, respectively. Notice VH=23 D V(iufy), (2.12
that every basis wave function is in fact a Slater determinant, =1 p(1)=1

Eq. (2.3.

where each term is given by the multipole expandi®:®).

In order to calculate the matrix elements of¥,

_ . _ (iLin,iL 1S V@jLLi5, 0% (9, one has to classify the elec-
Now, we take into account the Coulomb intrasite and in-yronic transitions. Following Ref. 3, where the energy terms

tersite repulsion by expanding the interaction in multipoleot molecular ions @, m=2-5,were calculated, we consider
series. As was discussed in Ref. 2, these interactions akgyr possibilities for the fourtts electron:(1) iS—jS; (2) i

C. Multipole repulsion between electrons

treated exactly in the chosen quantum sp@ssfs). —>J:f3, 3 |S—>Jf2, and(4) iS—>j§_, which we label by the index
Trle Coulomb interaction between two electrons at sites a,=1-4. Thea,=2 anda,=4 transitions involve odd number
andn’ is given by of transpositions among!, j5, jt; j5 and the parity is
L 1 P(a;=2)=P(ay,=4)=-1. For two other transitions the num-
V(R(N),R'(A")) = ——F. (2.7) ber of transpositions is even affa,=1)=P(a,=3)=1. Af-
IR(A) - R'(7")] ter this we are left with only threpsftates, which we label as
The multipole expansion in terms of site symmetry functions/1 J2: "’_“_“_”3' _I?or t_r)e_fnex_t, e_Ifectr_(?nB, we can consider three
(SAFS (Ref. 16 is pOSSIbllltleS(|3H13,_|3H12,I3Hjl) WhICh we label by the
indexaz=1-3. Inthis way we continue until we exhaust all
2(R). R (R)) = (RA 11! A) S, (R four electrons. As a result, each subcéseelectron transi-
VRI.R'() AEA: Oan (A0 S0 Sy (), tion) is classified by the three index lateet (a,,a3,a,), and
its parity is P(a)=P(ay)P(a3)P(a,). Mathematically, we re-
(2.9 :
duce a permutation of four electrons to a product of transpo-
where sitions. The matrix elemerit |V#|J) is found as®
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(V@) = > p(a) V4| 2)@, (2.13 even thg g electron with the trivial dependence of its angu-
lar part is strongly coupled to the threé &lectrons through
f-s ands-f transitions.

whereEa:nglEgs:lngl, and The classification scheme for electronic transitions, which
@) (@) _ ShagTias m (S 5. we have introduced here, is very useful for handling the

(V@)@ =X ppler e o (i) € Aidias) single particle interactions as well. The main difference is

L that now the interaction occurs with a single electron while

X 8% ja2) 81, ja) + Pui. (2.14  the rest of them produce Kronecker factors, Ref. 3. This

group of interactions includes the spin-orbit couplifg,,
‘the crystal electric field/cg, and the mean fiel&/y. The
latter two interactions are dealt with in Secs. Il and IV. The
spin-orbit coupling is

Hso:EVso(i)y (2.19

Here,p.i. stands for the other pair Coulomb interactions, Eq
(2.12. [The explicitly written term in Eq(2.14) corresponds
to the interaction between the fourth and third electydihe
elementsc,(ij) = ,(ij) are defined by

CA(ij):fdQ (i[AySy(A)A). (2.19
where the sum runs over all electrong, being the corre-

For the &5f2 configuration there are three types of thesesponding one-electron spin-orbit operator. Theelectron
coefficients. For thes-s transition it is only one integral does not experience the spin-orbit coupling and, in &%
(s|Y9|s)= 1/\4s, which is not zero. For thé-f transitions case, the summation includes only threfet&rms Vi), if
and real spherical harmoni&the coefficients (if jf) were ~ =1-3,where
tabulated in Ref. 1. Finally, there afes ands-f transitions .
which require the evaluation af (if j9). From the orthogo- Vsofif) = LGNS, (2.20

nality of spherical harmonics, we find that Here,I:(if) andé(if) are the one-electron operators of orbital

. 1 and spin momentuny; is the constant of the spin-orbit cou-
(0,0Y33,7) = Van (2.18  pling. The full intrasite Hamiltonian is given bl a=V®
‘ +Hg, It describes the $5f% configuration of a free nep-

where r=0, (m,c), (m,s), m=1-3, andzero otherwise. The tunium ion. Since the present method is not based on pertur-
matrix quantitieq2.15 were first introduced by Condon and bation theory, it extends the classical calculations of Condon
Shortley for the description of atomic spectraut they are  and Shortley.
also at the center of the calculation of the crystal electric
field effects!

In Eq. (2.14 v}l="a3 stands for a radial average. The E. Intersite matrix elements
general expression is We start with expressio(2.8) and write it in the space of
many-electron basis vectof®, Eq. (2.2). Carrying out the
vfi'b_c’e:jdf rzjdf' "2 Ra(r)Rp(r) angular integrationslQ(r), dQ’'(R), dQ(A’), dQ'(7’), we
obtain
X R(rRe(r") vi(r,r"), (2.17) i
([ 5 V(R(A),R'(A"))[I )

where R, Ry, Re and R, are radial components, and
vi(r,r")=v(r,r") is given by Eq(2.10. For the &5f3 con-

figuration the indices., b, c, e refer either to 8 or to 5f = _E E P( an)P(an ) E E 2 UX&K'Q -n’)
electron radial components. There are only two types of ra- aam a’ (v “la'=1AA
dial integrals, corresponding to nontrivial multipolar terms 3
(1#0) of 7s5f3, which are X Calid2 T &4i%)
B=1
o= JdrrJdr’r'zR(r)R(r)m(rr) VA
xq earlin i@ a) 1T alig i’ @B ¢ (2.21)
(2.18a B'=1
Here, the sum ovfem frnes;ms the summation over all permu-
fs sf_ r 2 tations of indicegy, j5, js, j° at siten transforming them to
drr? | dr’ r'2 Ry Ry(r N 172> 13 o
f f (DRA1) indices % («=1-4). Analogously, the sum oveal |mpI|es

the summation over all permutatlons pfl i’ 2, i’ 3, j’s at
site 0’ transforming them tq’a (a=1-4). P(a) and P(a’)
Here,1=2,4,6 and’=3, as follows from the selection rules stand for the parities of the permutations. Indieeand '

for c,(ff) andc,(fs). The radial integrals{™" andv/7™"  indicate which electron at sitginteracts with which electron
are proportional to the quantitids and G, introduced by at siten’. The other electrons labeled i8=1-3 at siten and
Condon and Shortley in Ref. 5. It is important to notice thatby 8’=1-3 at sitei’ do not contribute to the interaction and

X Rr")Rr") vy(r,r'). (2.18b
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TABLE II. The nine lowest and two highest eigenvalues 6f, alculated With;l':":, Eqg. (3.3. Here,g
stands for the Landé factoE” refers to the calculation of Amorettt al., Ref. 20. Two highest values &"*
marked by asterisk were reproduced by our calculation with the parameters of Ref. 20.

Term Deg. g (ug) E, meV EA meV
1 o 10 0.7546 0 0
2 N 12 0.9704 635.3 657.7
3 Liao 14 1.0993 1204.2 1256.2
4 *Fap 4 0.6027 1244.2 948.3
5 Hg/o 10 1.0154 1617.7 1438.3
6 *Fe) 6 1.0067 1702.9 1399.3
7 s 16 1.1797 1715.3 1762.3
8 S, 4 1.6546 1861.6 1614.9
9 ‘Fo 8 1.1195 1955.3 1697.1
40 F,, 8 1.1317 7796.6 65411
41 2F, 6 0.8589 8008.2 6631.6

produce the Kronecker delta symbols. The coefficieptare There are onlyf-f transitions described by four radial

defined by Eq.(2.19, and the intersitdi=i’) interaction integrals(2.183: v{"",1=0,2,4,6. The others are zero due to
the selection rules imposed by the coefficienisij), Eq.
(2.15. The radial integrab{""" (HubbardU) is not important
wad'a s o ) L 122 here since it does not result in term splittings. In the follow-
vty (A=A = [ drr® | dr’ rs Re(r) ing we will use the condensed notatiénfor ff, and thus
, v f'=yFF. These quantities are connected with the Slater
X RE(r")van(AA';T,r'). (2.2 (Condon-Shortley parameter’s F'(5f,5f) through the fol-
lowing relation:

o
aad o

elementv{®,,” is given by

For the four-electron space o§5f3, only evenl and!’ (in A,

A’) are retained in Eq92.21) and (2.22), andl,l’=0,2,4,6. e AT
Two very important examples of intersite Coulomb interac- U oIy 1': ' (3.2
tions, namely, the crystal electric field and the mean field,
will be considered in Secs. Il and IV. In particular, the Slater paramete®$, F*, andF® of Amor-
etti et al?° correspond tas"=14.007 eV,v;F=7.091 eV,
lil. CRYSTAL AND MEAN FIELD OF THE 5 f3 andv§F=3.168 eV.(In order to obtain the exact term split-
CONFIGURATION ting quoted in Table Il of Ref. 20, we had to scale their Slater

In this section we study the model where we assume th arameters by a factor of 0.975Bternatively, the quanti-

F-F : -
there are only three localized Blectrons at each neptunium U€Sv| ~ can be calculated by using the radial dependence of

site® Although we believe that the model is not adequate fothe 5f electronsRy, Eq. (2.183. We have done such a pal—
a realistic description of NpQ especially the part concern- culation and then corrected the parameters by comparing the

ing the loss of the magnetic moments in the ordered phase, §PJItiNgs of+thef3 configuration with experimental data for
is nevertheless very instructive to consider it in detail. ThePr' and Nd* (details are given in the Appenditve arrived

5f3 configuration being relatively simple offers an opportu- at

nity for thorough study and to understand the interplay be- vE'F =18.164, UE—F =8.578,
tween the disordered and ordered phases, or between the
crystal and quadrupolar mean field. On the other hand, the FE_ _ .
configurations p5f2 and &I5f2 involve too many basis states ve =3.362, (;=0.2547, inevV. (3.3

and consume too much time to be processed self-consistently After calculating the matrix elements of the Coulomb re-
for any temperature. pulsion and the spin-orbit coupling, we diagonalize the ma-

. trix
A. Free-ion electron energy spectrum

Hintra = V(S) + Hsoa (3-4)

The basis states for theSconfiguration are given by
1y =[ifib,if (3.1) and obtain the electronic spectrum d135_The nine lowest
bi2ish and two highest eigenvalues are shown in Table Il, where for
where as beforéf=1-14. The total number of basis vectors comparison we also quote the spectrum of free Np ion of
is 14x13x12/3!=364. We treat the f8 configuration in  Ref. 20. Notice that, in comparison with the spectftiof
the way which was specified in Sec. II. Amoretti et al, “F5, and *F, are higher tharfl,,, and
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H,,,, which is in better agreement with the sequence of TABLE Iil. Calculated parameters of the CERPP
terms for the 4% configurations of F¥ and Nd* known  =va, olfi,N; R 1), i=0 is the central Np SIt 1 is one of 12 Np
from experiment? nearest neighbors, poo A, oM, M; RN, 1), A |s one of six oxy-

gen neighbors.
B. Crystal electric field (CEF) excitations in the disordered

phase(T> 25 K) Units 1=4 1=6
In the disorderedno quadru_pole electron den_s)ltpha_lse oNPO meV —816.7 209.7
(T>25K) the electron density of the f% configuration NENp v 9637 6.190
adopts the cubi¢O,) site symmetry. This density modulation oo me ' :
is induced by the cubic crystal electric field experienced by q'O/(RMT) 0.1592 0.0994
three 5 electrons. In terms of the multipole intersite expan-  B/Qgie K —3405.2 546.0
sion (2.8) it implies that, for a given Np sit@, we treat 12 BNp/Qeff K —165.0 —24.2

Np neighbors (ij=1-12 and 8 oxygen neighborgn,
=1-8) in spherical approximation, i.el;=0 andS,,(n’) re-

duces toYJ= 1/\4m. The coefficientsc,:, Eq. (2.15, be- oxygen.(The influence of the interstitial region will be dis-
come S|mple cussed later.Q, refers to an electron at sité which inter-

acts with one of the threefSelectrons at. We then can
Colii )‘;50 i) (3.5 perform a summation over all electrons r@t and include
@ also in this term the interaction with the nucleus. This results
) _ . inreplacingQ, by eQyr in Eq. (3.7), Qur ande being the
Here, we write 0 forA"=(1"=0, A;g). At the central siteh  (5ta| charge inside the MT sphere and the electron charge
we expand the CEF in terms of SABs (M), A;=(1,Ay),  (e=-1), respectively. From Eq2.1D), it follows that
whereA,4 stands for the unit representation of the cubic site
groupOy,. The selection rules for the coefficiertg(i,,],) Of

the f-f transitions imply that there remain only two nontrivial Ui30= VA, o1 Ry’ R : (3.99
functions Sy, with 1=4 and|=6, which correspond to the _ _ _
cubic harmonic&K,(Q) andKg(2). The multipole two-center wherel in the indexA, is 4 or 6, and
expansion(2.8) becomes
q = f dr’ r’ "2 R2(r7y, (3.9

3 Y 1 > 27 !
V(R(),R (1)) = =2 va o(f,A'; 1,17) Sy (1), o
VAT A, Therefore, the CEF operator for any neptunium gite
(3.69 < RW3) can be written explicitly as

where

|
Ver(R() = E B Siayy( n)(RNp) (3.103
MT

v oA T, r)

A here
1 Sy, (M) w
:—,_fdﬂ(ﬁ)fdﬂ’(ﬁ’) e
Vaar

R - R()| B=B" B, (3100
(3.6b) and
Here, v, o(A,n"; r,r’) has the same value for all 12 Np BNP= =< 12 = 2
= ev A,[y; R 3.10
neighborls(ﬁizl—la, and a same value for all 8 oxygen ! ’T Qe” M ol s Ruin. /), ( °

neighbors (n,=1-8. As follows from Eq. (2.11),

vpo(A,A"; r,r") is independent of 't Equation(2.22 then o. 8 o -,
cah be written in the following form: B = Ny Qerr€ua, o i3 Ry ). (3.109
vito (M=) =00 X Qqr, (3.7 We quote all relevant parameters of CEF in Table Ill. As
where given by Eq.(3.103, the CEF operatoV is a one-electron
quantity?!?? CEF acts along with the Coulomb intrasite re-
v 2.2 o, pulsion, Eq.(3.4). Therefore, the total Hamiltonian for the
Vij0= | ArreRe(nvy oA 1, 1Y), (388 gisordered phase becomes
and Hdis(ﬁ) = Hinra + V(). (3.11

5 Although we have considered CEF from first principles,
Qu :f dr r'2RE(r'). (3.8D there is still an ambiguity related to the charge distribution in
the interstitial region. A more rigorous treatment of the prob-
Here, the integrations are taken ovex® <Ryq, where lem is given in Refs. 23 and 24. A careful consideration of
Ry is the radius of the muffin-tin sphere of neptunium orthe problem based on the solution of a periodic Poisson’s
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equation leads to a renormalization of the charges inside the %03
MT spheres, Ref. 24. In other words, in E¢3.103—(3.1009 100
the effective charges for Np and O are given by ]

50
AmRyr ]

. aKRyr)
err= Qur =~ (K =0) = 4aRyy 3 = A0 (K),

K#0

(3.12

wherep,(IZ) is the Fourier series expansion of the electron
density in the interstitial regionj;-; is the spherical Bessel

function. p;(K=0) is the average density in the interstitial ]
region, Quu/ Vour Where Q,,: and V., are the charge and -200
volume of the interstitial region, respectively. ] y
The calculation ofQ.s according to Eq(3.12 is quite 20 00 04 02 08 04 05 06 07 08 09 10
laborious since it requires the evaluation of the Fourier co- X
efficientsp,(K). Instead, below we consider two approxima- eff
et U P ST I e s rveiovet e o v o
S ! 1 tion of Np in cubic crystal field, Eq$3.109—(3.10d as a function
total charges inside the MT spheres of neptunium and 0XYgs the effective charges of neptunium and oxygen, Eg<.4a and
gen. Here, the electron charge in the interstices is completelys 141, zero corresponds to the energy of thg, level of free Np

-50

-100

ENERGY (K)

-150 3

ignored. In the second approximation we take ion.
ATRY -
Qer(I) = Qur = 3 p(K=0). (3.13 The most comprehensive study of the crystal field of the

5f2 configuration was performed by Amorei al., Ref. 20.
This expression corresponds to the homogeneous electr@@omparing their results with ours, we obtain the following
density distribution in the interstitial region. However, the relations connecting, andBg with V, and Vg used there:
modificat'i\‘on of effective Chargeﬁpin this approximation is too -
strqng.Qeﬁ(l)—_+4.1oae| and Q%ff(ll):+5.337| g| for nep- B, = 8\/:V4, (3.163
tunium, Qgy(1)=-0.284 €| and Qgi((I1)=+0.945¢]| for oxy- 7
gen. As was discussed in Ref. 2, the CEF splitting is overes-
timated in the second approximation. In reality the charge B = 16\f'§V5. (3.16b
density in interstices is highly inhomogeneous, concentrated
mainly in the proximity to oxygen and neptunium. This leads\We observe that, for a realistic choice Qf¢;, which corre-

to py(K#0)#0, and the last term in Eq3.12 acts in the SPONdS t0Xe~0-0.5, the CEF splitting isa few times

opposite direction, decreasiii@;; backward toQy,t values, fr?allert.hag t?ez\(/)aluce of 55 mg_\/ clonfrlldere? fcirtCEF excl-
which correspond to the first approximation. ations in et. 5. Lorrespondingly, the cajculated param-

The exact calculation 0. according to Eq(3.12 is etersB, andBg (Tables IV and V are smaller. Notice that it

beyond the scope of the present study. Instead, we have stu'(‘ff—nOt possible to relate the feature at 55 meV with ﬂl@m

: : : : ~ splittings because it is situated at much higher energy
!ed the crystal field effects as a function @ by introduc ~650 meV, Table Il. Most likely, the experimental excita-

'ng tions at 55 meV refer to the valence electrons delocalized on
QYP(Xetr) = QNE- + Xer QRR(IT) — QNR), (3.143  the Np—O bonds, while the lowest CEF excitations of Np lie
et Xetf) = Umt i etlll) = Lut) s . TABLE IV. CEF low energy spectrum and magnetic moments o
QSr(Xer) = Quir + Xer QeI = QY. (3.14b | d i f

the 5 configuration of Npxes=0, Ae=7380.7 K. Calculated CEF

. s
where 0<x.s<1. DiagonalizingH®s, Eqg. (3.11), we have parameter®,=-288.1 K,Be=254.2 K, Eq.(3.103.

found that 41 terms of & are split into 120 distinct sublevels
of I'g, I'7, andI'g symmetry of the cubic double-gro@.. In

: L . . r Deg. i~ K

particular, two lowest atomic-like levels are split according ©9 (6-e) Mdlue)
to the following scheme: Yoo Tg 4 0 +(1.275, 1.429
4| o2 — F8 + F8+ 1‘*6, (3153 Fg 4 20.5 i(0517, 1685

I's 2 60.2 +1.384

4

|11/2—> F8+F7+F6+F8' (3150 4|ll/2 FG 2 AE i1778
The resulting splittings and the dependence of CEFgn Ig 4 Ae+4.6 +(1.241, 2.12D

are shown in Fig. 1. The splittings of two lowest terms of the I, 2 Ae+6.3 +1.775
5f2 configuration, Eqgs(3.153 and (3.15b, is also given in Ty 4 Ae+26.1 +(1.119, 3.835

Tables IV and V forxes=0 andxes=0.5, respectively.
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TABLE V. CEF low energy spectrum and magnetic moments of 1 i 1 o
the 53 configuration of Np;X.;=0.5, Ae=7396.3 K. Calculated Sa(Q) = =(=Y2(Q) + Y37 (Q) - Y5(Q). (3.179
CEF parameterB,=1905.7 K,Bs=—66.5 K, Eq.(3.104. V3

The real spherical harmoniésY3®, Y3°, Y3° belong to a
r Deg. (- (K) M{pe) three-dimensional irreducible representatiog of Oy,. They

4 r 2 0 +1.383 are proportional to the Cartesian componeygszx, andxy.
o FG 4 c6.8 +(025'1 2,077 The Pn3m structure is obtained whes#i, corresponds to the
8 ) TR S first sublattice({fi,}), Sp—{As}, Sc—{n,}, and Sy—{ns}.28
Ta 4 164.9 * (1.204, 2.338 Now, we consider the intersite quadrupole interactions
“0, Tg 4 Ae + (0.392, 3.862 VA, A') between a central Np sitsublattice{n,}) and its
r, 2 Ae+28.6 1777 12 nearest Np neighbors belonging to sublattifgs}, p’
I's 4 Ae+110.8 +(1.290, 2.84% =2, 3,_4.[H_ere, we will not take into account the interactions
involving higher spherical harmonics because they are con-
I's 2 Ae+132.6 +1.785

siderably smaller, Eq.(2.11).] This direct quadrupole-
quadrupole coupling can be calculated from first principles.
Such a problem for th@a3 structure has been considered in

. : .. Refs. 1 and 2, where it is shown that tRe3 spatial order of
Finally, we would like to note that our CEF calculation is quadrupoles gives an effective attraction between them. For

based on g‘ggg’“”.c‘p'es' "%”9' in that respe_ct it differs fromthe Pn3m structure the direct interaction repulsive?® and
the otherg?2526which use fitting from experiment to extract we have to resort to an indirect coupling via oxygen-

the CE'I: paratmef[etrs.RT?erZ;re dalzsg othgr tecthnical difft?]r- ediated interaction as a driving force of the phase transi-
ences. in contrast 1o R€1s. 2> an we do not assume gk, e important fact which we exploit in this section is

the full momentumJ is a good quantum number, that allows that, irrespective of the nature of the effective Np-Np inter-

fora mixing of components belong!ng to d'ﬁefe?‘“” Ref. action, the mean field can be described by a general expres-
20 the basis was truncated to the f|rst_ 1.1 IQW—Iymg levels. Ir‘sion (3.24) below which simply reflects the rhombohedral
our approach we do not have these limitations. (trigonal) symmetry of the neptunium sHe2®
We start by deriving an effective mean field for the direct
C. Mean field and the structural phase transition at 25 k electrostatic interaction between quadrupoles. Following
Ref. 2, one obtains from E¢2.21) the following expression

Recent resonant x-ray scatterifigxS) experiments atthe ¢ the quadrupolar interaction operator between neptunium
Np My andMy, edges in Np@ indicated an unexpected re- giag atfi, andf, -
p/.

sult: the phase transition of Np@ not isostructural? In the
low temperature phase a long-range order of Np electric qua- Ve Q(ﬁl,ﬁp,) =w' pR(Ry) pr(ﬁp,). (3.189
drupoles was revealed by the growth of superlattice Brag . . .
peaks'>?” The space symmetry of the ordered phase wag"ere’”le{”l}’ Npr €Ny}, and the quadrupolar density op-
identified asPr3m.2® In real space thePr3m ordering is  €ratorpf at siten is given by

characterized by four different sublattices of the simple cubic 3 2

structure. We label these sublattices which contain the sites Qi) = D |1 p j ia - 1
(0,0,0, (a/2)(0,1,D, (a/2)(1,0,D, and(a/2)(1,1,0 by P %' >§ (a)glcp( el P At (319
{n,}, p=1-4,respectively. The most significant feature of the
ordered phase is the existence of only one threefold axis ot\ﬁ
symmetryCs; at each Np site which is also a cube diagonal.
The only quadrupole function compatible with the symmetry
lowering is Yg(Q’) in the coordinate system where tké
axis coincides with one of the threefold ax@sibe diago-
nalg: [111],[-1, -1, 1], [1, -1, —1], and[—1, 1, —1].
Consequently, there are four such functions which are give
by?® Coliada) = (ialSplia)- (3.20

1, L , There are four types of such coefficieriie., p=1-4) as
Sa(Q) = T§(YZS(Q) +Y3(Q)+Y3(Q)), (3.1738  follows from Egs.(3.178—(3.17d. Finally, the interaction
\ constanw' " in Eq. (3.18 is given by

at a smaller energy-6 meV, Tables IV and V.

here againa is a permutation of/!, j5, j% transforming
em to a new order given b§, k=1-3.P(a) is the parity of
the permutation; the index stands for the interacting elec-
tron at the site(The second interacting electron belongs to a
neighboring Np sitg. The other(noninteracting electrons
(8=1,2 atn produce the product of the Kronecker delta
Igymbols. The quadrupoldrf coefficients are defined as

wif=3(y - 2a""). (3.21)

1
S @)= = YZ(Q) - YAQ) +Y3(Q), (B.17H  ere

)
. yff:fdr rzfdr’ r'2 R(r) sz(r’)vAlAl(ﬁ,ﬁ’; rr'),
— _— (yis _vlc _v2s

S(Q) = \E(Yz (Q) - Y5(Q) - Y3(Q),  (3.170 (3.22a

165102-8
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TABLE VI. Calculated parameters of the mean field.

ofR(RYY o3 (Ry ' aff
4568.2 K —1442.6 K 437.6 K -138.2 K
b/ (RY)? A f(Prm) A f(Pa3)

0.3095 2856 K —1750.5 K

aff:f dr rzf dr’ r’Zsz(r) sz(r’) vAzAz(ﬁ,ﬁ’; r,r'),
(3.22h

with vy,(A,A"; r,r’) defined by Eg. (2.9, where n
=(0,0,0, fi'=(a/2)(0,1,1) and A;=(1=2, Tog k=1), Ay
=(1=2 ng,k 2). The correspondlng SAF SA Y . Using
the property(2 11), we rewritey' f andaf ' a

ff_ g QR o
(R v 2ARY (RNp 5 (3.239
f f
ff_ qz O
= (R , (3.23b
(RYB)? 3z (RM%)Z

where the short notatlon (R b, k=1,2, stands for the
correspondingu (A, A’; RM‘},RR‘APF) and the “quadrupole
charge”ql_, of 5f electron is given by3.9b).

PHYSICAL REVIEW B 71, 165102(2005

TABLE VII. Mean-field (trigona) splittings atT=0, Aes/Aff
=1.To=0.44 K, py=—0.0205.

r Deg. (6—€1) (K) Mg e

E 2 0 +0.9464 —0.0205

E 2 1.1 +0.7962 0.0135

E 2 20.7 +0.6406 —0.0083

E 2 21.7 +0.8428 0.0140

E 2 60.8 +1.3840 0.0011
Ig— E+E, (3.27)

whereE stands for the twofold degenerate irreducible repre-
sentation ofCs. The stated’s remain unsplit as a conse-
quence of the Kramers theorefr;— E.

We now obtain a system of equations which can be solved
self-consistently. At first we introduce an averagQQx
which defines the interactior{8.24) and(3.26). In the space
of the 53 configuration(364 state vectojswe diagonalize
the total HamiltoniarHMF, Eq. (3.26), and obtain the eigen-
vectors|K), K=1-364

HMFIK) = e¢|K), (3.29

where the lowest value ad¢ corresponds t&K=1,2. This is
the Kramers doublet of the ground state. We then calculate
the quantities

pP(K) = (K|pP(f|K), (3.29

In the mean-field approximation, after summing over 12which evaluate the quadrupolar moments of the stites
nearest neighbors belonging to three sublattices, we arrive afext, we find an improved value fofp{) which is pR(K

the effective bilinear quadrupole-quadrupole operator

UQC(rip) =\ (o) pP(fy), (3.24

=1)=p; Q(K=2), Eq.(3.25. The procedure continues until the
input and output values fa(p?) converge. As a consequence
of symmetry the expectation vallﬂﬁ?) is independent of the

where for Pném the direct quadrupo|e_quadrupo|e interac- sublattice{np} chosen for calculations, but the Hamiltonian
tion is repulsive\f f=4(yf =241 f)>0. The relevant calcu- and eigenvectors do depend on the choice. This is because

lated parameters are quoted in Table Wlhe same expres- the quadrupoles have different orientations for different sub-

sion holds forPa3, but in that case for the direct quadrupole lattices.

interaction \ff=44/<0, which means attraction.(p®)

For nonzero temperaturg, the mean-field equation for

stands for an expectation value of the quadrupole operathf> becomes

(3.19. At zero temperature it is the quantum average

(P2 = (IgdpR(il g9, (3.25

where|lg) refers to the ground state of the full mean-fiel

Hamiltonian

HMF(ﬁ) =U@ Q(ﬁ) + VCF(ﬁ) + Hintra(m- (3.26

The intrasite part of the interactions,, is given by Eq
(3 4). For CEF we used the valueg=0 and Qeff_ v

P == E pR(K) e /T, (3.303

d where

Z=> e« (3.300h
K
The results of the calculations are quoted in Tables VII

and VI, and in Figs. 2—4. We started by assuming
=-1750.5 K, Table VI. The value is typical for the direct

Q%=Qur- (As we discussed in Sec. Ill B, this gives the quadrupole-quadrupole electrostatic interactifin. fact, it

most realistic estimate for CBAf \f f<0 then at zero tem-

corresponds to the direct quadrupolar attraction in Ria8

perature the mean-field Hamiltoni&tMF has a ground state structure, i.e.\f '=\"f(Pn3m), Table V1] With this value

with a nontrivial quadrupolar order parametéps?)#O. In
such a case the site symmetry becomes triggwith the

we have found that the transition temperaﬂ]@es only 0.44
K. A typical dependence ofp?) is shown in Fig. 2. The

main point subgrou|s) and the fourfold degeneracy of the phase transition is of first order, with a discontinuity of the

former cubic quartet states is lifted

order parameter amphtud@ »)=-0.0075 afT,. Comparing

165102-9
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TABLE VIIl. Mean-field (trigona) splittings atT=0 with an
enhanced quadrupolar interaction constagy/A' '=10. T,
=24.6 K, pp=—0.0563.

r Deg.  (g-e) (K) M(ug) PP

E 2 0 +1.9211 —0.0563
E 2 54.0 +1.1723 —0.0014
E 2 72.8 +1.3684 —0.0004
E 2 85.8 +0.6211 0.0249
E 2 122.1 +1.4893 0.0256

the present calculation with that for cerinwe observe that
the low value ofTj, is due to a small quadrupolar suscepti- 0 2 4 6 8
bility of the ground state quartét;, since the difference in A /kff
is not that much(for cerium\ff=-2241 K). eff

The calculated transition temperature is very small in  FiG. 3. The transition temperatufie, as a function of the qua-
Comparison with the experimental value of 25 K. We thendrupo|ar interaction constaits.
conclude that the structural phase transition can be explained
by mcludmg an |nd_|rect blllnear_ quadrupole cogpllmy_per- the transition temperature goes quickly to zero and the or-
exchange interactidf). The microscopic consideration of dered .

; LT phase disappears.

the superexchange interaction is beyond the scope of the
present work. Instead, we model it by increasing the value of
A In such a casa' ' becomes a phenomenological param- IV. FOUR-ELECTRON CONFIGURATIONS
eter which we denote as,¢. By changinghq¢; we change the
transition temperature as shown in Fig. 3. We have found As follows from the previous section, the model which
that the experimental value of 25 K is achieved fortakes into account only thef% configuration at each nep-
Aeri/ Nf f~10, which indicates a substantial increase of thetunium site is not able to explain the disappearance of the
effective bilinear coupling, Eq(3.24). The relevant param- magnetic moments in the ordered phase at temperaiures
eters of such strong mean field are given in Table VIII. <25 K. On the other hand, the charge distribution inside the

Finally, we would like to mention that the mean-field cal- MT sphere centered at the neptunium nucleus indicates that
culations have been done assuming that the CEF is wealfere is always approximately one valence electron instanta-
i.e., Xetf=0. Increasingx¢s leads to an increase of the CEF neously present along with the three localizedetectrons,
splittings, which results in a strong suppression of the tranTable |. Even if the electron is in theorbital state, it expe-
sition temperaturelg, Fig. 4. Notice that ai.(I's—1's)  riences strong coupling with thef ®lectrons via intrasite-
=0.241 the ground state changes to fhedoublet, Fig. 1, f transitions. Therefore, the excitation spectrum at each nep-
which is apparently unfavorable for the quadrupolar ordertunium site differs from that for & considered in Sec. IIl. In
With further increase ok, beyond thex.(I's— ') point  the following, we model the couplings with the valence elec-
tron by considering 353, 7p5f3, and @I5f3 instantaneous
configurations. Here, we will not study the mean field in

10 12

1.2 T T T T T T T T

1.0 000000000000000,, E D A e S B

0.8 J ]
20 1 b

0.6 4 E

P/p,

] 15 ]
0.4 . P.O ]
] 10 h

0.2 -

0.0 >0 y
T T T T T T T T 04 T T T T T ]

T/T X

Q eff

FIG. 2. A typical evolution of the order parameter amplitude  FIG. 4. The suppression of the transition temperafgewith
(p?} with temperature;pg= <p?>|T:0, Tq is the transition temp- the increase of the CEF strengi;y;, see also Fig. 1 and Sec. Il B;
erature. Ner/ N F=10.
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TABLE IX. The five lowest and the highest eigenvalue &5, TABLE XI. Mean-field (trigona) splittings of &5f3 at T=0,
g is the Landé factor. Af=5252 K.

Term Deg. 9 (us) E r Deg. (6=€) (K) Mpe)
1 %, 9 0.6266 0 A 1 0 0
2 %l 11 0.8983 196.5 E 2 26.0 +0.3467
3 %l 13 1.0670 737.2 E 2 124.1 +0.6786
4 °F, 11 0.8700 814.4 A 1 301.8 0
5 3, 15 1.1691 12451 A 1 330.1 0

E 2 516.5 +1.4769

82 F, 7 1.0172 8229.5

metry, it follows that the strongest interaction is of quadru-

such detail as for thef§ configuration Our main objective is  polar type
to demonstrate that the ground state can be nonmagnetic and L .
separated from the magnetic excitations by an energy gap ue Q(”p) =-Af P?(np), (4.2)
larger than 25 K.This means that af <25 K, the magnetic where Af=)\f f<p?> [compare with(3.24)]. The quadrupolar
moments are ineffective. operator pP(fi,) belonging to the sublatticén,} is given
again by Eq.(3.19 with the corresponding orientational
functionS,, Egs.(3.179—(3.179. The only difference is that
the s electron produces an additional Kronecker symbol, i.e.,

The 75f3 configuration has been considered in detail inin Eq. (3.19 8=1-3.Notice that both CEF, Eq3.103, and
Sec. Il. We are working here in the space of 728 state vectonhe mean field, Eq4.2), act only on the §electrons. Taking
[y=li!,i5,i%; i%. The 5 states are coupled to twestates Af=5252 K, we diagonalized the full Hamiltonian
through thef-s transitions accompanied by the multipole MEray 1100 .
Coulomb interactions with=3. The strength of this interac- HYP() = UR S(A) + Ver() + Hinga(1). (4.3

tion was estimated from the LDA calculation of a Np atom, The resultant electronic spectrum is shown in Table XI. We
Eq. (2.180 observe that the ground state is nonmagnetic, while the first
rest magnetic excitatiofE) does not contribute to the magnetic
vy =1.313eV. (4.1 susceptibility ifT<25 K.

The electron energy spectrum of the57 configuration
consists of 82 distinct levels; see Table IX. In the cubic crys-
tal field the two lowest Ievelé5|4 and5I5) are split as quoted
in Table X. Notice that the ground state is nonmagnetic. In the case of the j5f2 configuration, we construdtl4
However, at higher temperatur€6> 25 K) two low- lying, X 13x12/3!) X 6=2184 basis vectors
excitations ofT, and T; symmetry contribute to the Curie ittt
law for the magnetic susceptibili). 1) =ligiz.i5; iP). (4.4

In the ordered phase the local symmetry of the Np siténs pefore, i refers to a 5 electron,iP=(k,s,) to the B
changes tD4.1%7% As we discussed in Sec. Il C the mean gjectron(k is its orbital partk=1-3, ands, is the spin pait
field can be expanded in a multipole series and, from sym- e jnteraction betweenf%lectrons was described in de-

tail earlier. In additionp-p andf-f transitions lead to intra-

TABLE X. CEF low energy spectrum and magnetic moments ofsite multipole interactions with tHe=0 andl =2 components;
the %5f° configuration of Np,Ae=2293.2 K. CEF parameteB,  f-p transitions give the Coulomb multipole couplings with
=-288.1 K,Bg=254.2 K} Xe1s=0. =2 andl=4. The relevant Slater parameters were extracted
from the radial dependences of a Np ion

A. 7s5f 2 configuration

B. 7p5f 3 configuration

r Deg. €—¢) (K M
I o) PP =1.442, ufPP'=0.739, v PP=5237 (ineV).
%, E 2 0 0;0 4.5
T 3 15.6 +1.5671; 0 '
T, 3 25.1 +0.2946: 0 Also, the p electron experiences the spin-orbit interaction
A 1 61.6 0 with é’p212795 ev.
First, we calculated the electron spectrum of the free ion,
%l Ty 3 Ae £2.2435; 0 Hinwa @nd obtained 242 distinct levels, Table XII. In the cubic
E 2 Ae+4.1 0; 0 crystal the’K, and®l, levels are split as quoted in Table XIIL.
T, 3 Ae+6.5 +2.2393; 0 (The procedure of CEF effects is outlined in Sec. Ill B; CEF
T 3 Ae+20.3 +2.7113: 0 does not act on thp electron) Notice that the ground state

now is a magnetic triplet of th&, symmetry, which together
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TABLE XIl. The five lowest and the highest eigenvalue of  TABLE XIV. Mean-field (trigona) splittings of H5f% at T=0;

7p5f3; g is the Landé factor. Af=6612 K, AP=3426 K.
Term Deg. 9 (us) E r Deg. (€=€) (K) Mps)
1 5K, 11 0.7430 0 A 1 0 0
2 %, 9 0.7459 154.5 E 2 24.6 +0.4171
3 Ky 13 0.9450 689.7 E 2 105.8 +0.8134
4 %, 1 0.9875 756.2 A 1 246.4 0
5 °G, 5 0.5948 1248.1 A 1 272.6 0
- E 2 480.7 +1.7473
242 P, 3 0.5031 10515.7
3
with two other magnetid’; excitations, Table X, gives the pe(fy) =2 1) 2 P@)cy(iPiP) 11 5.;;6;<J|- (4.9
1 a B=1

Curie law for the magnetic susceptibility.

At T.=25 K the structural phase transition occurs and th
symmetry of the Np sites is reduc&d.This symmetry
change is accompanied by lifting degeneracies of some cub
levels?8 In particular, the ground-stafB, triplet is split into ; g =
a doublet and a single level as demonstrated in Table XIV'.B comprises the additiongd electron, i.e. 5=1-3.

The mean field is approximated by its quadrupolar electric Notice that in the ordered phase the ground-state level is
PP y q P single and nonmagnetic, Table XIV. This mechanism can

SHere,a is a permutation of!, j}, jf to j%, B=1-3;P(a) is
the parity of the permutation. The quadrupolar operator for
fhe 5 electrons is given again by E.19, where the index

part . . .
explain the loss of magnetic moments because the magnetic
— . N H : 3 . . . . .
UQ QR = - Af p?(ni) — AP ptp?(ni)’ (4.6) excitations of the @5f° configuration lie too high in energy.

where C. 6d5f 2 configuration

A=) +NP(pD), (4.79 The basis vectors here are

Iy =if,i%,i%; i%, 4.10
AP=2\P (p®R) +\P p<p(p?>_ (4.7b ) =15z 1% (4.10

. . . ‘where index' stands for % stateqi’=1-14, while the index
The following parameters of the interaction were assumed.idz(k,sz) refers to fived orbitals and the spin projectios).
s Thus, i9%=1-10, and in total there are 3640 nonequivalent
Nf) 5=0.1604, A'=6612 K, AP=3426K. basis vectorsl).
(Rup) We start by considering the intrasite interactidig .
(4.9 Here, in addition tof-f interactions, we distinguish two
groups. The first group arises betweétd and f-f transi-
Since the charge density expansion of theelectron has tions. It is described by the multipole Coulomb repulsion
quadrupolar componentsg(iPjP)=(iP|Sy|jP)#0 [Sy are  with thel=0, 2 and 4 angular componerBAFS. The sec-
given by Egs.(3.173—3.17d], the mean-field expansion ond group is due to thé-d and d-f transitions. The corre-
(4.6) includes the quadrupolar projection prstates sponding multipole interactions are witk1, 3, and 5. The
relevant parameters were extracted from the LDA calculation
TABLE XIIl. CEF low energy spectrum and magnetic moments Of the Np ion in the 85f3 configuration
of the 7p5f3 configuration of Np,Ae=1789.1 K. CEF parameters

B,=-288.1 K,Bg=254.2 K; Xe1=0. vi®9'=11.322, ofF9"=3.701, o{9"=1.794,

I Deg (ae)® Mape) vi9=11.289, »{9=3.482 (ineV),

Ky T, 3 0 +1.8525; 0
Ty 3 3.2 +1.7788; 0 £{4=0.3497 eV. (4.11
E 2 16.7 0;0 _ _
T, 3 45.0 +2.1534: 0 The parameters fqr thief interactions were kept unchanged.

We then diagonalized the 364640 matrix of(l |Hi,yald)

%l E 2 Ae 0;0 and obtained 383 distinct levels. The five lowest and the
T, 3 Ae+14.8 +1.8645; 0 highest levels are quoted in Table XV. The CEF splittings of
T 3 Ae+24.8 +0.3655: 0 the lowest’L, and °K; levels are given in Table XVI. It
A 1 Ae+59.1 0 should be noted that, unlike before, the CEF operator acts

not only on the % electrons but also on thed®née
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TABLE XV. The five lowest and the highest eigenvalue of  TABLE XVII. Mean-field (trigonal) splittings of &I5f3 at T=0;

6d5f3; g is the Landé factor. AT=6220 K,A9=3442 K.
Term Deg. g (up) E r Deg. (&—€) (K) Mpp)
1 5L6 13 0.7530 0 A 1 0 0
2 5K5 11 0.7201 167.2 E 2 32.8 +0.4362
3 5L7 15 0.9232 667.9 E 2 136.6 +0.8797
4 5K6 13 0.9269 767.2 A 1 311.2 0
5 3D3 7 0.6800 886.9 A 1 337.0 0
. . E 2 601.2 +1.7673
383 P, 3 1.0004 13116.4
d
94

_ d__
UCEF() = B, (1) + BY () + BY (). (4.12 Rypys 01280 Bammzs2dK (449
| _ PR ) . Notice that for the ground state the CEF gives a nonmagnetic
Here, p;(), 1=4,6, andp(n) are cubic projectors on the  gjngie level, Table XVI, but there are two low-lying magnetic
andd states, respectively, given by levels(T, andT;) at 9.7 and 15.6 K, which contribute to the
Curie law of the magnetic susceptibility at>25 K.

3 3 Below 25 K the local symmetry of Np is loweréé The
o) =2 [, P@) > Gf K [ T 5‘31'2(‘]" mean field is given by
1,J a a=1 B=1 R R .
(4133 UQQ(np) =-A' pr(np) - A“ de(np)y (4.19
where
3 AT=\"(pR) + X" %), (4.163
pa(M) = 2 [N P@)K[j*H]T 81j5',
1 a p=1 A9=0I PR + N4 pQ). (4.16b

(4.139 Here againp?(ﬁ) and de(ﬁ) are quadrupolar projection on

the f andd states, respectively. They are given by expres-
whereK;((}) refers to the cubic harmonics witkr4 and 6.  sions similar ta(4.139 and(4.13b, where we replack(np)
Here, we keep the same notations as bef&igs.(3.19 and by S, Eqgs.(3.173—3.170, for four sublatticegn,}=1-4 of
(4.9)], i.e., the permutatior transforms the indicef, j5, j5  Pndm, Sec. Ill C.[Compare also witl{3.19 and (4.9).] Be-

to j2', k=1-3. Thepermutations which interchange tiile  low we approximated the parameters of this interaction by
andf indices are excluded because they give zero contribu- q

tion to (4.133 and(4.13h. The parameteB} was calculated B _ 0.1713. AT=6220 K. AY9=3442 K

by the method described in Sec. Il B. Fr;=0, we have (RY®Z ’ ' '

found that (4.17)

TABLE XVI. CEF low energy spectrum and magnetic moments We_then diagonalized the Wh_0|e Hamiltonia#" [HMF
of the &I5f3 configuration of NpAe=1949.5 K. CEF parameters =U® () +Vce+Hiqa] and obtained the lowest energy lev-

B,=-288.1 K,Bg=254.2 K, andBj=-232.7 K; Xe;{=0. els quoted in Table XVII. Notice that now the first magnetic
excitation ofE symmetry is separated from the nonmagnetic
r Deg. (=€) (K) M ug) ground state by an energy gap ef33 K, which implies
5. A 1 0 0 agai_n _Qisappearance of the Curie law for the magnetic sus-
6 ceptibility of the ordered phasd <25K).
T, 3 9.7 +0.1809; 0
A 1 12.6 0
V. DISCUSSION AND CONCLUSIONS
T, 3 15.6 *+0.3772; 0
E 2 36.4 0: 0 We have presented a multirefererfogany Slater determi-
T 3 43.6 +2.0637: 0 nany approach to crystal-and mean field based on the tech-
nigue of expanding the Coulomb repulsion between electrons
*Ks Ty 3 Ae +1.7253; 0 in a multipolar series, Sec. Il. The method is a genuine
E 2 Ae+3.1 0; 0 many-electron approach which requires a numerical classifi-
T, 3 Ae+21.1 +1.8006: 0 cation of the permutations of the electrons on the same crys-
T, 3 Ae+253 +2.0883: 0 tal site and a calculation of the Coulomb repulsion between

all pairs. Thus, the fundamental group of electron
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permutationd' is explicitly taken into account. +1.8525u5 and 0. The first excited state located only at 3.2
In the disordered phase we considered the HamiltoniaiK above the ground state is also magnéiid.7788; Qug).
which includes the crystal electric fie(CEF) effects and the In the ordered(Pn3m) phase the ground state is a singlet
intrasite Coulomb repulsion responsible for Hund’s rules on(Table XIV) with zero magnetic moment. The first excited
equal footing, Sec. lll. It is shown that the crystal field is state is magneti¢+0.4171ug), but now it lies at 24.6 K
reduced to a single particle potentidihe crystal electric  above the ground level. That means that at temperatures be-
field levels above the ground state are in fact low-lying localjow ~25 K the first excited state is not populated and thus
excitations of the electron compleXhe typical splittings there are no effective magnetic moments at neptunium sites.
there are of the order of 10 K and thus the electron spectrum |f we apply the present model to YQOthen at each ura-
is very sensitive to the crystal symmetry. An effective bilin- nijum site one finds two localizefl electrons and approxi-
ear quadrupole-quadrupole Coulomb repulsion treated in thegately one conduction electron. In total, there will be ap-
paper in the mean-field approximation competes with thgyroximately three electrons. It is not possible to construct a
crystal field and lowers the crystal symmetry at low temperasinglet state from three electrons. Therefore, the local mo-
ture. The influence of both interactiofise., crystal field po- ment will be omnipresent at low temperatures, which ac-
tential and the bilinear couplingn the transition tempera- counts for the magnetic behavior of Y@ accordance with
ture has been investigated in detail for teconfiguration, the experiment* This gives some credit to the presented

Sec. lll and Figs. 2—4. . _ model, although a nonmagnetic ground state of P (RZef.
Disappearance of magnetic momentsaifCe and NpQ  19) requires additional consideration.

gives rise to a question of correlations between structural and The general idea for the loss of magnetic moments to
magnetic properties in solids, which we have investigatedome extent is similar to the one suggested by models of
theoretically in our model of they-a phase transition in Kondo and Anderson and often referred to as the Kondo
Cel? The loss of magnetic moments in Np@t 25 K ac-  effect!! Notice, however, that here we are dealing with the
companied by a small volume contracti$@.018% (Ref.  intrasite interactions treated on thb initio level. In particu-
27)] has been known for many years, and was ascribed to dar, we replace the Anderson hybridizatibmhich is linear
“isostructural” phase transition. Recently, however, it turnedn terms of creation/annihilation operators for valence and
out that the phase change in Npi® a structural one, and the localized electrons, by the Coulomb intrasite repulsion,
symmetry of the low temperature phaseRs3m. In this  which being a density-density coupling liflinear in terms
respect it is interesting to notice that, in our model for Ce, weof these operators. Another important theoretical ingredient
have predicted théa3 space symmetry for the ordered of our model is the symmetry lowering which modifies the
phase? which is very close to thé@n3m structure reported excitation spectrum of the electron system at low tempera-
for NpO, in Ref. 13. In particular, the active irreducible rep- tures. This part is absent in the Kondo mechanism. The pre-
resentation also belongs to tiepoint of the Brillouin zone.  sented picture of coupling between localized and delocalized
In this paper we have pursued a simple idea that the synelectrons on the same site is close to the initial idea of Zener,
metry lowering produces a splitting of the many-electronwho considered Hund’s rules responsible for the coupling.
single site excitation spectrum, which can explain the differ- CEF and mean field have been objects of theoretical in-
ence in the behavior of the magnetic susceptibility and théerest for many year&,2226:353¢and we would like to men-
loss of the magnetic moments. Before, such an idea watton here some important relations between our model and
expressed by Fried¢t al, Ref. 32. However, Friedét al.  other approaches. We have shown that CEF effects can be
applied it to the model of threé electrons. In this case the perceived as a first meaningful term of the intersite multipole
threef electrons cannot form a singlet state no matter whaexpansion, when all neighbors of a neptunium site are con-
symmetry reduction occurs at low temperatures. The imporsidered in the spherical approximatioli=0). It is then a
tant element of the present study is that we have found aingle particle potentig?? The intersite nonspherical terms
partial admixture of a conduction electron to the localiZed are also included in the full potentidFP) electron band
electrons. This fact is supported by our band structure calcustructure calculations like FP-LMT@inear muffin-tin or-
lation (Sec. Il A) which indicates thatbesides the three lo- bital method and FP-LAPW(linear augmented plane-wave
calized5f electrons, there is always approximately one con-method.* Therefore, in principle one could say that the CEF
duction electron at each Np sit&his changes the effective effects are equivalent to the full potential treatm@&t!
instantaneous configuration from the three-electréhtd a  However, there are two very important caveats here. First, in
four-electron one(7s5f3, 7p5f3, or 6d5f3) and presents a the band structure calculations the nonspherical terms of the
possibility to obtain a nonmagnetic ground state without in-potential apply to itinerant electrons in the ground state,
voking the concept of the octupole order param&té&rom  while CEF effects are considered usually for localized elec-
this point of view it represents an alternative to the latter, androns in the ground aneéxcitedstates. The second and more
we believe that both approaches deserves a thorough expeitaportant remark is that practically all band structure calcu-
mental consideration and verification. A four-electron com-lations are based on a single determinant approximation.
plex at the neptunium site can lead to a nonmagnetic groundhis intrinsic feature does not allow one to describe the in-
state separated from the magnetic excitations by an energyasite interactions fully. In particular, the atomic term struc-
gap~25 K, Sec. IV. Perhaps the most clear example is theure and Hund’s rules are excluded from the consideration.
7p5f2 configuration(Tables XIlIl and XIV). In the disordered  This shortcoming does not apply to our treatment, which is
phase(Fm3m space symmetjythe ground state is a triplet based on a many-determingntultireference approach. For
(Table XIII). The magnetic moments of the ground level arethe intrasite part of interactions our model is very close to the
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scheme described by Condon and Shortley for the electroberck. This work has been financially supported by the
spectra of atoms and ions, although there are some unimpaBijzonder Onderzoeksfonds, Universiteit Antwerp@OF-
tant differences. NOI) and by the Fonds voor Wetenschappelijk Onderzoek,
The main approximation of our approach is the choice ofvlaanderen.
basis and electronic configuration. No additional approxima-
tions used sometimes for crystal field calculations are made.
This distinguishes our approach from Stevefisihere the
CEF is expressed in terms of equivalent operafiors,, and
J,. The latter approach, as well as the work of Lea, Leask,
and Wolf for cubic CEF(Ref. 25 based on it, are justified ~ Since the experimental data on the energy splittings of the
only if Jis a good quantum number. In our approach this4f3 configuration of Pt and Nd* are available from the
condition is not necessary, and indeed a mixture of seeral atomic database of NIST, Ref. 10, while there is no such
values is allowed. Notice also that the approach of Steveni§formation for 53 we have performed calculations of
starts with the symmetry arguments, while the interactions{ " (1=2,4,6, Eq. (2.183, by using the radial dependence
are introduced later in a phenomenological manner. of R¢ obtained from LDA calculations of atoms. After this
However, the present calculation scheme does not takee diagonalized the Hamiltonian of the free i0® +Hy,)
into account chemical bonding in an intrinsic way. Therefore,and compared our calculated spectra with the experimental
further development of the method should be focused on thisnes. We have noticed that the comparison is impratteel
problem. sequence of terms corresponds to the experimentalibowe
reducevs, ™ andv§ ™ by a factor of 0.75 while keeping}; ™
ACKNOWLEDGMENTS almost the saméfactor of 0.975. Therefore, we have used
| am indebted to Professor K. H. Michel for valuable dis- the same scale factors for Np in Np@nd obtained param-
cussions on the problem. | also appreciate help from B. Vereters given by Eq(3.3).

APPENDIX A: CORRECTION OF SLATER INTEGRALS
FOR Np
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