1H NMR based metabolomics of CSF and blood serum: A metabolic profile for a transgenic rat model of Huntington disease

Kim A. Verwaest, a,e,⁎ Trung N. Vu, b,e Kris Laukens, b,e Laura E. Clemens, c,e Huu P. Nguyen, c,e Bjorn Van Gasse, d,e José C. Martins, d,e Annemie Van Der Linden, d,e Roger Dommisse a,e

Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
Department of Mathematics & Computer Science, University of Antwerp, Middelheimlaan 1, 2020 Antwerp, Belgium
Department of Medical Genetics, University of Tuebingen, Calwerstrasse 7, 72076 Tuebingen, Germany
Department of Organic Chemistry, University of Ghent, Krijgslaan 281 S4, 9000 Gent, Belgium
Department of Biomedical Sciences, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium

⁎ Corresponding author at: Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium. Tel.: +32 3 265 3267.
E-mail addresses: kim.verwaest@ua.ac.be (K.A. Verwaest), TrungNguia.Vu@ua.ac.be (T.N. Vu), kris.laukens@ua.ac.be (K. Laukens), Laura.Clemens@med.uni-tuebingen.de (L.E. Clemens), hoa.nguyen@med.uni-tuebingen.de (H.P. Nguyen), Bjorn.vangasse@UGent.be (B. Van Gasse), jose.martins@UGent.be (J.C. Martins), Annemie.VanDerLinden@ua.ac.be (A. Van Der Linden), roger.dommisse@ua.ac.be (R. Dommisse).

Article info
Article history:
Received 22 April 2011
Received in revised form 19 July 2011
Accepted 8 August 2011
Available online xxxx

Keywords:
Huntington disease
CSF
Serum
Metabolomics
Transgenic rat
1H NMR spectroscopy

A B S T R A C T
Huntington disease (HD) is a hereditary brain disease. Although the causative gene has been found, the exact mechanisms of the pathogenesis are still unknown. Recent investigations point to metabolic and energetic dysfunctions in HD neurons.
Both univariate and multivariate analyses were used to compare proton nuclear magnetic resonance spectra of serum and cerebrospinal fluid (CSF) taken from presymptomatic HD transgenic rats and their wild-type littermates. N-acetylaspartate (NAA), was found to be significantly decreased in the serum of HD rats compared to wild-type littermates. Moreover, in the serum their levels of glutamine, succinic acid, glucose and lactate are significantly increased as well. An increased concentration of lactate and glucose is also found in CSF. There is a 1:1 stoichiometry coupling glucose utilization and glutamate cycling. The observed increase in the glutamine concentration, which indicates a shutdown in the neuronal-glial glutamate-glutamine cycling, results therefore in an increased glucose concentration. The elevated succinic acid concentration might be due to an inhibition of succinate dehydrogenase, an enzyme linked to the mitochondrial respiratory chain and TCA cycle. Moreover, reduced levels of NAA may reflect an impairment of mitochondrial energy production. In addition, the observed difference in lactate supports a deficiency of oxidative energy metabolism in rats transgenic for HD as well.
The observed metabolic alterations seem to be more profound in serum than in CSF in presymptomatic rats. All findings suggest that even in presymptomatic rats, a defect in energy metabolism is already apparent. These results support the hypothesis of mitochondrial energy dysfunction in HD.

A R T I C L E I N F O

1. Introduction

Huntington disease (HD) is an autosomal dominant neurodegenerative disorder, characterized by progressive motor, cognitive and psychiatric dysfunctions. Although the disease can occur at any age, the median age of onset is 40 years. Most patients die one to two decades after disease onset.
HD is caused by a mutation in the gene coding for the protein huntingtin. The exact function of this protein is still unknown. Normal individuals have a CAG-trinucleotide repeat length of less than 37 [1].

People whose CAG repeat length exceeds this number will develop HD. The length of the CAG expansion is proportional to the severity of the disease and inversely proportional to the age of onset [2]. At present, the exact mechanism of the HD pathology is still unknown. However, recent evidence points to metabolic and energetic dysfunction in HD neurons [2–4]. Better knowledge about this mechanism is expected to lead to more appropriate analyses, which in turn should result in a better understanding of the disease. Moreover, this will help to direct the quest for improved treatments in the proper direction.

According to Nicholson et al. [5], metabolomics is defined as ‘the quantitative measurement of the dynamic multiparametric metabolic response of living systems to pathophysiological stimuli or genetic modifications’. Since 1999, applications of this technique have emerged in other fields (e.g. environmental sciences) [6]. Metabolites in biofluids are in dynamic equilibrium with those in cells and tissues. A healthy individual attempts to retain the concentration of metabolites in cells and tissues constant by homeostasis. Abnormal
cellular processes due to sickness, toxins, etc. result in altered biofluid compositions. Various analytical techniques are available to detect low molecular weight metabolites. The ones most commonly applied in metabolomic studies are nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry (MS). The latter is frequently used in combination with a chromatographic separation technique (liquid chromatography, gas chromatography, etc.) [7]. Although NMR is less sensitive than MS, this technique offers some important advantages. It is a high-throughput analysis that does not require any preceding chromatographic separation or purification procedure. Additionally, sample preparation is very straightforward. Furthermore, it is a non-destructive method capable of detecting all non-exchangeable protons, provided they are present above a certain threshold concentration (μM concentrations). Moreover, the measurements are very reproducible and inexpensive on a per sample basis [8–10]. All these advantages have contributed to the application of NMR spectroscopy in clinical diagnoses of diseases and in the follow-up of subjects participating in medical treatment studies [11].

The NMR spectrum of a biofluid is generally extremely complex in nature, since each molecule present in the biofluid gives rise to one or several peaks in most cases. Moreover, many peaks show some fine structure and splittings which cause a prominent overlap of signals analyzed with univariate or multivariate statistical methods. Subsequently, these reduced datasets can be used to extract information [13]. Spectral interpretation can be simplified by applying automatic data reduction methods. Subsequently, these reduced datasets can be analyzed with univariate [2,14–22] or multivariate [13,23–27] statistical methods.

In this study we applied 1H NMR spectroscopy in order to disentangle the metabolic profile of serum and cerebrospinal fluid (CSF) from a rat model for HD. Both univariate and multivariate statistical analyses were applied in a search for pathology specific differences. It is anticipated that these investigations lead to a gain in knowledge about the pathogenesis of HD and make it possible to identify some potential biomarkers.

2. Materials and methods

2.1. Animals

Transgenic HD rats carrying a truncated huntingtin cDNA fragment with 51 CAG repeats under the control of the native rat huntingtin promoter, and their wild-type littermates were used [28]. The expressed gene product was 75 kDa, corresponding to 22% of the full-length huntingtin (cDNA positions 324–2321, amino acid positions 1–709/825, corresponding to exons 1–16), which are under the control of 886 bp of the rat huntingtin promoter (positions 900 to 15). Genotyping was carried out as previously described [28]. The number of CAG repeats was analyzed in a subset of transgenic rats using these primers: cggctgaggcagcagcggctgt (forward) and ccttcgagtccct-cagtgctc (reverse). The reverse primer is labelled at the 5′ end with the fluorescent dye Cy5. The PCR amplicon length was then determined by its interaction with proteins present in the sample. Subsequently, the total volume was transferred to a 5 mm NMR tube.

2.2. Serum samples

Samples were taken as done previously [33]. In short: rats were sacrificed with CO2 and blood was drawn directly from the heart. All rats were tested for diabetes immediately after sample collection. The blood was incubated for 1 h at 37 °C, followed by centrifugation for 30 min at 3000 × g. The serum was collected and immediately stored at −80 °C until shipped for NMR analysis. Upon arrival, serum samples were immediately stored at −80 °C until measurement.

In order to keep the time spent at room temperature to a minimum, samples were randomly divided in three groups. Samples assembled in one group were prepared together. Just before their acquisition, samples were thawed to room temperature. An aliquot of serum (250 μL) from each sample was mixed with 300 μL of an aqueous saline solution. In this way, each sample contains 0.1 M NaCl and 10% D2O. The addition of an internal standard like DSS is prohibited by its interaction with proteins present in the sample. Subsequently, the total volume was transferred to a 5 mm NMR tube.

2.3. 1H NMR spectroscopy

Prepared samples were analyzed on a Bruker Avance II-700 spectrometer, operating at a proton frequency of 700.13 MHz. The spectrometer is equipped with a BACS-60 automatic sample changer and a 5 mm inverse TXI-Z probe when measuring serum samples. Since the brain volume of rats is rather small, the amount of CSF that can be collected at once from one animal is too small to perform a classical NMR analysis (>100 μL is necessary, prior to dilution to the final 550 μL measuring volume, in order to get a good S/N). Combining CSF taken from different animals within a population is not advisable, since this will remove the possibility to detect individual differences.

For this study, we used serum and CSF from female, transgenic HD rats (n = 10 for serum and n = 8 for CSF) at an age of two months and compared these with age-matched wild-type (WT) littermates (n = 12 for serum and respectively 9 for CSF). We are aware of the fact that the number of samples used in this study is rather small. However, this was determined by keeping in mind the well-being of animals and in order to reduce costs. Moreover, in the literature a lot of studies where even less samples per group are investigated, can be found [15,27,29–32].
Recently, Bach and co-workers [10,34] demonstrated that the use of a 1 mm probe setup provides an alternative to address the measure-
ment of such volume restricted samples. Therefore, CSF samples were
measured with a 1 mm inverse TXI-Z probe, requiring only 8 μL of
sample volume. The samples were held at room temperature while on
the sample changer and at 303 K during acquisition. Carr–Purcell–
Meiboom–Gill (CPMG) experiments were executed in order to get 1D
1H NMR spectra of the samples. The individual CPMG spin echo (in
total 1 ms) was repeated 20 times, resulting in a total spin-spin
relaxation delay of 20 ms. Suppression of the water signal was
performed using 2.22 s presaturation during the relaxation delay. For
serum 64 scans (32 K data points each) were sampled whereas 1024
scans were needed for CSF. Each scan had an acquisition time of 0.78 s.
To keep variation due to sample handling to a minimum, tuning and
matching as well as shimming were performed automatically for each
sample. Digital filtering was performed using the ‘baseopt’ option
available in Topspin 2.0 (Bruker Biospin Corporation) which results in
flat baselines. Prior to Fourier transformation, the Free Induction
Decays (FIDs) were zero-filled to 64 K and an exponential window
function with a line broadening factor of 0.3 Hz was applied. The
acquired NMR spectra were consecutively processed for phase and
baseline correction. In the absence of an external reference (vide
supra 2.2.2), all serum spectra were referenced to the methyl doublet
of lactate at 1.33 ppm. After initial referencing of the CSF spectra using
the anomeric glucose 1H signal at 5.225 ppm, the spectra were still
available in Topspin 2.0 (Bruker Biospin Corporation) which results in

2.4. Data reduction of the NMR spectra

The 1H NMR spectra were automatically reduced into consecutive
integrated spectral regions (buckets) of an equal width (0.05 ppm)
applying R (version 2.7.2, http://www.r-project.org). In order to
discriminate spectral variations due to different quality of water
suppression from one spectrum to another, the region containing
the water resonance (4.5–5.0 ppm) was not included in the analysis.
In order to account for differences in concentration between samples,
the subdivided spectra were scaled to their total intensity.

2.4.1. Multivariate analysis
Prior to multivariate analysis, the data were scaled to unit variance.
Besides unit variance scaling, also pareto scaling and no scaling were
tested on the dataset. However, these did not generate significant
differences. Since all the variables possess an equal weight, irrespec-
tive of their absolute magnitude in the original data when unit
variance scaling is applied, this method was preferred.

Principal component analysis (PCA) is used to project the data in
two or three dimension in order to be able to discern outliers. This
method transforms the original variables in new, uncorrelated
variables or principal components (PC) in such a way that the first
PC represents most of the variation present in the original dataset.
Higher PC will subsequently contain less amount of the variance
[5,7,26].

Partial least squares-discriminant analysis (PLS-DA) is a multivar-
iate classification method based on PLS, a regression extension of PCA.
This technique uses a priori knowledge about the data to maximize
the separation between samples belonging to different classes [7,35].
Here, it concerns information about the pathological condition
(healthy or HD) of each sample. The obtained scores plots are used
to visualize the separation between the samples based on their class
membership. The corresponding loading plots contain information
about the variables responsible for the observed separation. Both
PCA and PLS calculations were performed with R (R version 2.7.2, http://
www.r-project.org, packages FactoMineR version 1.14, caret version
4.76). A double cross-validation (2CV) strategy and permutation test
[36] were applied to estimate the quality of the developed PLS-DA
model. The data points were randomly divided into 5 fractions, of
which one was used for testing, whereas the others were used for
training and validation. Leave-one-out cross-validation (LOOCV) [36]
is used for validation in order to select the optimal model. LOOCV uses
all but one data point as the training set. The left-out data point is used
for validation. The data were randomly ordered 100 times. The
average of area under the ROC curve (AUROC) was used as the
criterion. In order to select the optimal number of components for
PLS-DA, different numbers were tested (from 1 to the number of
samples). Furthermore, the number of misclassifications and the Q2
value were collected. A distribution was generated for the H0
hypothesis that no difference exists between the two classes. In the
permutation test, the class labels of control and disease are
permuted by randomly assigning them to different individuals.
With ‘wrong’ class labels, a classification model is again calculated.
The data were permuted 1000 times. For each permuted set, the
cross-validation was repeated 20 times and the average parameter
values were computed.

2.4.2. Univariate analysis

The bucket table created for the multivariate analysis was exported to
Excel (Microsoft Office 2003) in order to carry out a Student’s t-test. P
levels smaller than 0.05 were considered to be significant. An advanced classifier, Support Vector Machine (SVM)
[37], was applied to classify the samples based on the significantly
differential buckets. Each sample contains one out of two possible
labels, and is represented by a feature vector based on the values of
the significant buckets. The data samples were randomly divided into
5 fractions, of which one was used for testing, whereas the others
were used for training and validation. The data were randomly
ordered 100 times. The average of area under the ROC curve (AUROC)
was used as the criterion. To estimate the quality of the developed
SVM model, the double cross-validation (2CV) strategy and permu-
tation test described in [36] used for PLS-DA were applied again. In all
experiments, the SVM function in the package e1071 (version 1.5-22)
in R (R version 2.7.2, http://www.r-project.org) was used with the
default setting parameters, e.g. linear kernel and cost equals 1.

3. Results

3.1. Visual inspection of NMR spectra
There is a lot of information comprised in 1H NMR spectra of serum
and CSF samples. Visual inspection of the spectra can already reveal
some interesting features in some cases. A representative 1H Carr–
Purcell–Meiboom–Gill (CPMG) serum spectrum of both a wild-type
and a transgenic HD rat is represented in Additional file A. The
projection of all available serum spectra onto each other makes a clear
differentiation between wild-type (WT) and HD rats possible. Peaks
representing glucose and succinic acid seem to be elevated in spectra
of transgenic animals. Visual examination of an overlay of the CSF spectra does not indicate
an immediate difference between WT and HD rats.

3.2. PCA to detect outliers

Principal component analysis (PCA) was applied on the data in
order to uncover inherent similarities and differences potentially
present within the spectral profiles. The scores plot of the first two
principal components gives a representative overview of the data
(Fig. 2).

3.2.1. Serum samples
The first principal component (PC1) accounts for 76.42% of the
total variation present in the dataset. The second principal component
(PC2) accounts for an additional 10.02% of the total variation. Data points lying outside the 95% confidence ellipse (Hotelling T^2) can be considered as outliers, i.e. observations that have an aberrant behaviour. As indicated in Fig. 2, two data points are laying outside the Hotelling T^2 plot. Reconsidering these spectra reveals that the water suppression technique, which has been used while acquiring the spectra, has caused a shift of the baseline in comparison with the other spectra. This slightly different prospect is revealed by this multivariate statistical tool. However, these two spectra are not discarded for further analysis, as their differences are not from a biological nature.

3.2.2. CSF samples

The scores plot of the first two principal components accounts for 45.57% of the total variation present in the CSF dataset. Possible outliers present in the dataset were uncovered by spotting the data points lying outside the 95% confidence ellipse of this scores plot. Consecutive PCA indicate three data points (one WT and two HD samples) with an aberrant behaviour (see Additional file B, Additional file C and Additional file D). Those spectra correspond with low available volume samples (<40 μL lyophilized). For this reason, these spectra were excluded from the dataset before further analysis.

3.3. Discrimination between normal and pathological samples using PLS-DA

A partial least squares-discriminant analysis (PLS-DA) model was developed in order to discriminate samples according to their class membership, i.e. healthy or HD. The results of this analysis are depicted in Fig. 3. The scores plot shows a reasonable separation between both sample groups. The corresponding loading plot reveals the metabolites that are responsible for the observed separation. Annotation of the loadings was confirmed by a comparison with reference spectra of an in house database recorded at 700 MHz.

![Visual comparison of serum spectra](image)

Fig. 1. Visual comparison of serum spectra. An overlay of all acquired 1H NMR 700 MHz serum spectra, a some representative peaks of glucose b signal of succinic acid. Spectra of wild-type rats are coloured black; those of HD rats blue.
double cross-validation (2CV) strategy and permutation test were applied to estimate the quality of the developed PLS-DA model, as described in [36]. This yielded an area under the ROC curve (AUROC) of 84.90% and 72.73% for serum and CSF respectively. For all assessment parameters (Q² value and the number of misclassifications), there is a clear distinction between the permutation distribution and the original classification. This shows that the specific classification is significant (see Additional files E1 for serum and E2 for CSF).

3.3.1. Serum samples
The loading coefficients responsible for the separation of the serum samples according to their pathological condition correspond to the metabolites glucose (δ3.28, δ3.38, δ3.43, δ3.48, δ3.53, δ3.73, δ3.78, δ3.83, δ3.88, δ3.93 and δ5.23), lactate (δ1.33 and δ4.13), lipids (δ0.83, δ0.88, δ1.23, δ1.28, δ1.58, δ2.03, δ2.23, δ2.73, δ2.78, δ5.28 and δ5.33), succinic acid (δ2.43), glutamine (δ2.13 and δ2.43) and NAA (δ2.03). An overview of these results is given in Table 1.

3.3.2. CSF samples
The most relevant loadings in the separation of CSF samples according to their pathological condition are situated around δ3.38, δ3.43, δ3.48, δ3.73, δ3.78, δ3.83 and δ3.88 (glucose) and δ1.33 (lactate).

3.4. Discrimination between normal and pathological samples using a univariate analysis
A Student’s t-test is used to uncover the metabolites that show a statistically significant concentration difference between the two observed populations. Thus, these metabolites can be used to differentiate HD from healthy samples. The bucket table, which was created for the multivariate analysis, was used as input variable for the univariate analysis. For each bucket, the corresponding p-value was calculated. A p-value smaller than 0.05 was considered as significant.

3.4.1. Serum samples
The bucket comprising both the singlet peak of the methylene groups of succinic acid and the multiplet peak of CH₃CO of glutamine was found to be significantly different between WT and TG rats. In order to assign this statistically significant difference unambiguously to the correct metabolite, both signals were integrated referenced to the methylene singlet of creatine at 3.93 ppm. A visual representation of these results is displayed in Fig. 4. These boxplots reveal that both metabolites contribute to the differentiation of the samples according to their pathological condition.
to their genotype. Both glutamine ($p<0.05$) and succinic acid ($p<0.005$) were found to be significantly increased in HD rats compared to WT littermates. Glucose was found to be elevated in HD rats as well ($p<0.05$). Furthermore, NAA was decreased in HD rats ($p<0.05$). Moreover, the bucket comprising the area between 4.30 and 4.25 ppm (see Fig. 5) is found to be significantly decreased in HD rats. At present, we have not been able to identify the component(s) present in this bucket. These results are illustrated in Fig. 4. The thirteen most significant buckets for whom the p-value is smaller than 0.05, able in discriminating between healthy and HD samples, were used to build an SVM classifier. An area under the ROC curve (AUROC) of 71.44% could be obtained. For all the assessment parameters, a clear distinction between the permutation distribution and the original classification is obtained. This demonstrates that the specific classification is significant (see Additional file E3).

3.4.2. CSF samples

In CSF, a Student’s t-test could not reveal any statistically significant metabolite concentration difference between WT and HD rats.

4. Discussion

In this study we have shown that rats transgenic for the HD mutation can be discriminated from healthy, wild-type littermates...
even prior to the onset of motor deficits [38]. A comparable study was already executed by Tsang and co-workers on a different animal model [27]. However, there are some inconsistencies between the figures and text described in their paper. The metabolites they indicated in the loading plot of the serum samples correspond to those mentioned for urine samples in the text and vice versa.

We used three different methods for the analysis. Visual inspection of the serum spectra already suggests that glucose as well as succinic acid levels are elevated in HD rats. These results are statistically confirmed by means of a univariate analysis. Moreover, the Student’s t-test discloses that glutamine and NAA are able to discriminate between HD and WT rats in serum samples. PLS, a supervised multivariate statistical technique, was performed in order to reveal the discriminative power of different metabolites between the studied groups. For the serum samples, the loadings which are able to separate healthy from pathological samples correspond to the metabolites glucose, glutamine, lipids, lactate, succinic acid and NAA. Regarding CSF spectra, visual inspection and univariate analysis are not able to discriminate WT from HD rats. PLS, on the other hand, distinguishes both glucose and lactate as discriminating metabolites.

In CSF as well as in serum samples, glucose is indicated as a biomarker to detect Huntington disease presymptomatically. Although the literature [2,4,39] exposes some evidence of diabetes in subjects with HD, plasma glucose measurements in the same transgenic rat model at different ages do not reach the threshold for diabetes [28]. Thus, the observed difference in glucose must have been caused by a perturbation in another metabolic pathway. Some evidence of a disturbed glucose metabolism in HD can be found in the literature [4,40,41]. A possible explanation for the observed increased concentrations of glutamine and glucose is also documented: according to Sibson et al. [32], there is a 1:1 stoichiometry between the consumption of glucose and the formation of glutamate. The observed increase in glutamine can reflect a decreased glutaminase activity. Glutaminase is a mitochondrial enzyme found in neurons that takes care of the conversion of glutamate in glutamine. A perturbation of the glutamate-glutamine cycling may indicate an impairment of energy metabolism and mitochondrial respiration [27]. Thus, a decrease in glutaminase activity precludes the conversion of glutamine into glutamate. Owing to this, the neurons will have a lack of glutamate for neurotransmission. Finally, this will result in an elevated concentration of glutamine and glucose (due to decreased glucose utilization) as observed in our experiments [4]. This theory can be affirmed by previous studies which also point to a disruption of energy metabolism in HD [42,43].

In addition, the observed difference in lactate supports the theory of a deficiency of oxidative energy metabolism in rats transgenic for HD. The conversion of glucose to pyruvate during glycolysis involves the concomitant reduction of 2 mol of NAD⁺ to NADH. In cells undergoing an aerobic respiration, pyruvate is subsequently oxidized to acetyl-Coenzyme A (Acetyl-CoA), which in turn, enters the citric acid cycle. In this way, the NADH produced during glycolysis is reoxidized through the mitochondrial electron transport chain. However, a perturbation in the Krebs cycle or mitochondrial electron transport chain might prevent pyruvate to enter the oxidative energy metabolism. Since NADH needs to be reoxidized to NAD⁺ to maintain a steady state condition, an alternative pathway to transfer electrons is accomplished, i.e. the reduction of pyruvate to lactate by the catalyzed reaction of lactate dehydrogenase. As a result, an increased concentration of lactate, the end product of anaerobic glycolysis, indicates a defect in energy metabolism as well [44].

An elevated concentration of succinic acid is probably due to an inhibition of succinic dehydrogenase. This enzyme has two important functions in the mitochondria. First, it supports the oxidation of succinic acid to fumarate in the tricarboxylic acid (TCA) cycle. Second, it is linked to the respiratory chain, i.e. complex II of the mitochondrial electron transport chain [45,46]. A decrease in mitochondrial complex II activity has already been observed in HD [3,47,48]. Our finding of an elevated succinic acid concentration is therefore in line with these previous results.

A decreased NAA concentration is known to be a marker of neuronal dysfunction [27,49]. Reduced NAA levels have been documented for several neurological diseases, e.g. Alzheimer disease [50], Huntington disease [4,27,51] and Parkinson disease [17,50]. Moreover, in HD it clearly correlates with the duration of symptoms and the CAG repeat length [16,52]. The enzyme responsible for the synthesis of NAA, L-N-acetylaspartyl transferase, is exclusively found in mitochondria [50]. Since inhibitors of the mitochondrial respiratory chain seem to decrease the concentration of NAA [4], reduced NAA levels may reflect an impaired mitochondrial energy production [27]. Obviously, a change in the concentration of each of these metabolites can be linked to a variety of conditions. However, the changes observed for all metabolites combined could allow for a more narrow correlation, i.e. with HD.
5. Conclusions

In conclusion, this study shows that metabolic alterations already emerge in the serum and CSF of these rats before overt symptoms of HD are manifested. In an early stage of the disease, metabolic alterations seem to be more pronounced in serum compared to CSF. All metabolites found being able at discriminating WT from HD rats alterations seem to be more pronounced in serum compared to CSF. In an early stage of the disease, metabolic alterations seem to be more pronounced in serum compared to CSF. In an early stage of the disease, metabolic alterations seem to be more pronounced in serum compared to CSF. Moreover, this study shows that 1H NMR spectroscopy is an appropriate tool to investigate the metabolic disturbance occurring in early stages of HD. A more profound knowledge of the disease pathology can be obtained by performing a metabolomic analysis of samples originating from more mature rats. Such an analysis could give more insight into the development of this disease, which in turn may lead to improved therapeutic interventions.

Conflict of interests statement

The authors declare that they have no competing interests.

Acknowledgements

KAV thanks the University of Antwerp (UA) and the FWO-Vlaanderen for funding. AVDL, JCM and RD thank the FWO-Vlaanderen for funding. AVDL, JCM and RD thank the FWO-Vlaanderen for funding. AVDL, JCM and RD thank the FWO-Vlaanderen for funding. AVDL, JCM and RD thank the FWO-Vlaanderen for funding. AVDL, JCM and RD thank the FWO-Vlaanderen for funding. AVDL, JCM and RD thank the FWO-Vlaanderen for funding. AVDL, JCM and RD thank the FWO-Vlaanderen for funding. AVDL, JCM and RD thank the FWO-Vlaanderen for funding. AVDL, JCM and RD thank the FWO-Vlaanderen for funding. AVDL, JCM and RD thank the FWO-Vlaanderen for funding. AVDL, JCM and RD thank the FWO-Vlaanderen for funding. AVDL, JCM and RD thank the FWO-Vlaanderen for funding. AVDL, JCM and RD thank the FWO-Vlaanderen for funding.

References

