This item is the archived peer-reviewed author-version of:

Novel selective glucocorticoid receptor agonists (SEGRAs) with a covalent warhead for long-lasting inhibition

Reference:
Ryabtsova Oksana, Joossens Jurgen, van der Veken Pieter, Vanden Berghe Wim, Augustyns Koen, De Winter Hans.-Novel selective glucocorticoid receptor agonists (SEGRAs) with a covalent warhead for long-lasting inhibition
Bioorganic and medicinal chemistry letters - ISSN 0960-894X - 26:20(2016), p. 5032-5038
Full text (Publishers DOI): http://dx.doi.org/doi:10.1016/j.bmcl.2016.08.091
To cite this reference: http://hdl.handle.net/10067/1354010151162165141
Title: Novel selective glucocorticoid receptor agonists (SEGRAs) with a covalent warhead for long-lasting inhibition

Article Type: Short Communication

Keywords: Covalent inhibition; glucocorticoid receptor; segra; gsk866; inflammation

Corresponding Author: Prof. Hans De Winter, Professor

Corresponding Author's Institution: University of Antwerp

First Author: Oksana Ryabtsova, Ph.D.

Order of Authors: Oksana Ryabtsova, Ph.D.; Jurgen Joossens, Ph.D.; Pieter Van Der Veken, Professor; Wim Vanden Berghe, Professor; Koen Augustyns, Professor; Hans De Winter, Professor

Abstract: The synthesis and in vitro properties of six analogues of the selective glucocorticoid receptor (GR) agonist GSK866, bearing a warhead for covalent linkage to the glucocorticoid receptor, is described.
Dear,

We would like to submit the short communication entitled ‘Novel selective glucocorticoid receptor agonists (SEGRAs) with a covalent warhead for long-lasting inhibition’ for publication in Bioorganic & Medicinal Chemistry Letters.

We believe this paper fits nicely within the scope of the Journal as it describes the chemical synthesis of novel organic compounds and their associated pharmacological properties.

With kind regards,

Prof. Dr. Hans De Winter
Letter to the reviewers

The following modifications were added to the manuscript:

1) We have modified all schemes and figures by truncating the 4-fluorophenylpyrazole to an R group

2) We have corrected structures 3b and 4b in Schemes 3 and 5.

3) We have increased font sizes of heteroatoms and arrow labels.

4) We corrected formatting in the legends of Schemes 1-6

5) We have corrected ‘dex-mex’ in text and table.

6) We have based our work on SEGRA compounds since it is believed that these compounds show less unwanted side-effects than the traditional glucocorticoids. Of course, there is still no thorough clinical evidence of this hypothesis so other compounds could potentially be considered as well to this initial study.

7) The pivotal importance of the dichlorophenyl ring is indeed consistent with the available GSK SAR data. We have added a comment on this to the manuscript with addition of an extra literature reference (Barnett et al., Bioorg. Med. Chem. Lett. 2009, 19, 158).

8) We have clarified the meaning of ‘inactive form of dexamethasone mesylate’ and reported the source of both batches.

9) We have included three additional figures as Supplementary Material. Figure S1 compares the docking modes of 4a and 4b and their relation to Cys643. Figure S2 has been included to visualise the binding of dexamethasone (mesylate) and the surrounding cysteins. Figure S3 has been included to visualise the position of Cys643 and Cys622 in relation to the GSK866 inhibitor. From this figure it can be seen that Cys622 is located nearby the binding pocket but pointing its thiol group towards the solvent.

10) We have added Figure 4 to the manuscript to illustrate the binding of dexamethasone mesylate in relation to the binding of GSK866, Cys656 of the GR sequence, and all close cysteines around the binding pocket. Also, the binding a second steroid-like molecule, observed in the crystal structure of the GR/dexamethasone complex, is also given. A paragraph has been added to the manuscript to describe this.

11) We have combined tables 2 and 3 into one single table and have updated the text in the manuscript.

12) We have added a sentence (and literature reference) to the text why we did not consider alternative positive controls such as hydrocortisone mesylate.

Finally, we would like to thank both reviewers as we believe that their comments have contributed to increase the quality of the manuscript.
The synthesis of novel SEGRA analogues with warhead for covalent binding is described.
Reversible inhibition could be observed.
Irreversible inhibition was not observed.
Novel selective glucocorticoid receptor agonists (SEGRAs) with a covalent warhead for long-lasting inhibition

Oksana Ryabtsovaa, Jurgen Joossensa, Pieter Van Der Vekena, Wim Vanden Bergheb, Koen Augustynsa, Hans De Wintera

a Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Campus Drie Eiken, Building A, Universiteitsplein 1, 2610 Antwerp, Belgium.

b Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling, Department of Biomedical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Campus Drie Eiken, Building A, Universiteitsplein 1, 2610 Antwerp, Belgium.

Email addresses:

Hans De Winter: hans.dewinter@uantwerpen.be

Corresponding author:

Hans De Winter
Abstract

The synthesis and in vitro properties of six analogues of the selective glucocorticoid receptor (GR) agonist GSK866, bearing a warhead for covalent linkage to the glucocorticoid receptor, is described.
Keywords

Covalent inhibition; glucocorticoid receptor; segra; gsk866; inflammation
Glucocorticosteroids are an established class of medicines that are still successfully used to treat inflammatory and auto-immune diseases. However, the main disadvantage of these compounds, especially at high dosing levels and long-term usage, is the tendency to induce skin atrophy, tachyphylaxis and the occurrence of a rebound effect upon discontinuation of treatment.\(^1\) For this purpose, the search towards more selective glucocorticoid receptor agonists (SEGRAs) is still an active research domain, with GSK866 and mapracorat being the prototypes of this class of compounds (Figure 1).\(^2\) Both glucocorticosteroids and selective glucocorticoid receptor agonists show a pharmacological effect by binding to and activating the glucocorticoid receptor (GR). However, in contrast to the glucocorticosteroids - which pharmacological effects arises from the activation of both a transactivation and transrepression pathway - SEGRAs selectively activate the GR and exert their pharmacological effect by activation of only the transrepression pathway.

Over the past years, we have been involved in the synthesis of close analogues of GSK866 with the intention to search for covalent inhibitors of the GR. The rationale behind the covalent binding approach is to identify GR agonists for topical application and that could have a long-lasting effect on the GR but without the potential systemic side-effects that common SEGRA compounds still have. Having a covalent linkage between the agonist and the GR might potentially reduce systemic release of the compound with less systemic side-effects as a result. This proof-of-concept study builds further upon the ideas that emerged from the recent development of covalent-binding kinase inhibitors,\(^3,4\) with the underlying idea to develop long-lasting GR agonists with applicability in the anti-inflammatory domain.

The crystal structure of the ligand-binding domain of the GR has been solved in complex with GSK866 (pdb-code 3E7C),\(^5\) and this structure shows the location of a cysteine residue (Cys\(^{643}\)) in close proximity of the dichorophenyl group of GSK866 (Figure 2). Complexes of the GR with other SEGRA compounds are available from the PDB (Figure 1),\(^6\) but we have selected GSK866 as a synthetic starting point for the design of covalent analogues due to synthetic feasibility reasons for the introduction of the covalent warhead, and also because of the fact that molecular graphics analyses were favorable in terms of this compound to be used as a starting template structure. The close presence of such cysteine residue has prompted us to investigate the possibility of modifying
GSK866 by introducing a reactive warhead into the structure, with the possibility of forming a covalent linkage between protein structure and ligand upon binding. Supported by molecular graphics-based qualitative modeling, six such close analogues of GSK866 were synthesized and their biochemical properties were evaluated. The structures are shown in Figure 3.
Figure 1. The structure of GSK866 and two other SEGRA analogues of which the crystal structure of the complex with the GR ligand-binding domain is available from the PDB (entry codes are given in parentheses). The structure of mapracorat is also shown.
Figure 2. Close-up in the ligand-binding pocket of the ligand-binding domain of the glucocorticoid receptor. Shown with purple-colored carbon atoms is the dichlorophenyl ring of GSK866, with the yellow dotted line indicating the distance between this ring and the thiol group of Cys$_{643}$.
Figure 3. Design of novel GSK866 (1) analogues with the dichlorophenyl substituent replaced by reactive groups to form a covalent bond with the thiol group of Cys₆₄₃ of the ligand-binding domain of the GR (2-5). Proposed docking poses of 4a and 4b in the receptor are shown in Figure S1 (Supplementary Material).

The main building block 11 was synthesized according Scheme 1, starting from the commercially available 1,3-bis(benzyloxy)propan-2-ol (6), followed by a Corey-Kim oxidation to the corresponding ketone 7. Conversion of the ketone into the α-trifluoromethyl-α-tosyloxymethyl epoxide 8 was done according the method as described by Keeling and coworkers. Nucleophilic substitution, initially with N-benzylethanamine and subsequently with ammonia in methanol, yielded compound 9. Coupling of 9 with 13 finally yielded 10, which was then debenzylated into 11 by means of hydrogenolysis.
Scheme 1. Synthesis of 1. Reagents and conditions: a) NCS, Me₂S, Et₃N, toluene; b) TMSCF₃, Bu₄NF, THF; c) H₂, Pd/__; EtOH; d) TsCl, pyridine; e) K₂CO₃, DCM; f) PhCH₂NHEt, dioxane, N₂, followed by NH₃ in MeOH; g) 13, HATU, DMF; h) H₂, EtOH, Pd/C; i) LiOH, EtOH/H₂O, reflux, then acidification.

Synthesis of the target compound 2 (Scheme 2) was achieved by coupling 11 with 2,5-dioxopyrrolidin-1-yl 3-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)propanoate (16). This latter was prepared from the reaction between furan-1,5-dione (14) and 3-aminopropanoic acid (15).

Scheme 2. Synthesis of 2. Reagents and conditions: a) 16; DMF, rt; b) DMF, rt; c) DCC, NHS.
Compound 3a was prepared from 11 through coupling with \(N-Z-(D)\)-proline\(^{11} \), deprotected by means of Pd/C-catalyzed hydrogenolysis, and finally converted into the target structure after nucleophilic addition-elimination with chloroacetylchloride. Treatment of 18 with acryloylchloride yielded compound 3b (Scheme 3).

Scheme 3. Synthesis of 3a and 3b. Reagents and conditions: a) \(N-Z-(D)\)-proline, HATU, DIPEA, DMF, rt; b) Pd/C, \(H_2 \), MeOH, rt; c) chloroacetylchloride, DIPEA, DCM; d) acryloylchloride, DIPEA, DCM.

Compound 4a was synthesized by coupling 11 with the commercially available 2,6-dichloro-3-nitrobenzoic acid (19) to yield 20, followed by reduction to the aniline 21 and nucleophilic addition-elimination with chloroacetyl chloride to yield the final product 4a (Scheme 4). Compound 4b was prepared by coupling structure 11 with 24 (from a mixture of 24 and 25); compound 24 was synthesized from the commercially available 19, reduction to the corresponding aniline 22, and
conversion into 24 by means of nucleophilic addition-elimination reaction with chloroacetyl chloride (generating also 25 resulting from an electrophilic addition side-reaction) (Scheme 5).

Scheme 4. Synthesis of 4a. Reagents and conditions: a) first SOCl₂, benzene, reflux 1 h, then DCM; b) Zn, NH₄Cl/THF; c) chloroacetyl chloride; DCM, NaHCO₃.
Scheme 5. Synthesis of 4b. Reagents and conditions: a) 24, first SOCl₂, benzene, DrySyn 100 °C, then 1 equivalent NEt₃, DCM, -50 °C, overnight; b) Zn, NH₄Cl/THF; c) acryloylchloride, DCM, then 0.5 M NaOH, then 1 M HCl; d) SOCl₂, benzene.

Synthesis of 5 was accomplished in three steps, starting from 11 by coupling the secondary amine to the commercially available N-Z-(R)-(+)‐pipelicolic acid to yield 26, removal of the benzyl carbamate group by means of Pd/C-catalyzed hydrogenolysis, and finally a nucleophilic addition-elimination reaction with chloroacetylchloride to yield the target compound 5 in moderate yields (Scheme 6).
Scheme 6. Synthesis of 5. Reagents and conditions: a) N-Z-(R)-(+) -pipecolinic acid, HATU, DIPEA, DMF, rt, overnight; b) Pd/C, H\textsubscript{2}, MeOH, rt, overnight; c) chloroacetylchloride, DIPEA, DCM.

Cellular inhibitory activity of the GSK866 analogues was determined using a human GR receptor radioligand binding assay using 1.5 nM \[^{3}\text{H} \]-dexamethasone as radioligand.12 IM-9 cells were used as the source of the soluble GR. Assays were performed at Cerep.13 The results are given in Table 1. Only compounds 4a and 4b displayed significant specific binding to the receptor, suggesting pivotal importance of the dichlorophenyl ring in target recognition, an observation which is in agreement with the reported SAR around the GSK866 series.9

Table 1. Specific binding measured as % inhibition of control. All experiments were performed in duplicate.

<table>
<thead>
<tr>
<th></th>
<th>% inhibition of control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 (\mu\text{M}) ligand concentration</td>
</tr>
<tr>
<td>18</td>
<td>-20%</td>
</tr>
<tr>
<td>3b</td>
<td>-23%</td>
</tr>
<tr>
<td>27</td>
<td>-12%</td>
</tr>
<tr>
<td>4a</td>
<td>92%</td>
</tr>
<tr>
<td>4b</td>
<td>96%</td>
</tr>
</tbody>
</table>
In order to investigate whether compounds 4a and 4b bind to the GR in an irreversible manner, a wash-out experiment was set up using dexamethasone mesylate and cortisol. Dexamethasone mesylate has been reported as an irreversibly binding covalent ligand of the receptor and served as a positive control for covalent modification.14 Compared to the corresponding C-21 mesylates of cortisol and deacylcortivazol, dexamethasone mesylate has been reported to be the most useful derivative due to its favorable balance of high receptor affinity and predominantly irreversible antiglucocorticoid activity.15,16 Cortisol served as a positive control of a non-covalent binder. The protocol was based on the method as described by Simons and Thompson.17 After initial incubation of the compounds with the receptor and subsequent removal of unbound compounds, the ability of the receptor to bind 3H-dexamethasone added in excess was assessed. The IM-9 cell-line cytosolic preparations (240 \(\mu\)g/assay) were pre-incubated for six hours with 4a, 4b, dexamethasone mesylate and cortisol at a concentration chosen as to occupy approximately 80% of the receptors. For 4a, 4b and dexamethasone mesylate the concentration tested was 100 nM, and for cortisol this was 60 nM. After incubation, free compounds were removed by activated charcoal followed by centrifugation. Subsequently, an excess (3 nM) of 3H-dexamethasone was added a second incubation was performed. Binding capacity of 3H-dexamethasone was quantified at several incubation times (1 h, 2 h, 3 h, 4 h, 16 h, 24 h). The results are given in Table 2 (‘Initial experiments’).
Table 2. Specific binding measured as % inhibition of control, before and after wash-out at given time points. All experiments were performed in duplicate. ‘Dex-mes’ stands for dexamethasone mesylate. For the replication experiments, buffer solutions were devoid of β-mercaptoethanol and a new batch of dexamethasone mesylate was used.

<table>
<thead>
<tr>
<th>% inhibition of control</th>
<th>Before wash-out</th>
<th>1 h</th>
<th>2 h</th>
<th>3 h</th>
<th>4 h</th>
<th>16 h</th>
<th>24 h</th>
<th>Average (1-24 h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial experiments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cortisol</td>
<td>69%</td>
<td>3%</td>
<td>6%</td>
<td>4%</td>
<td>-1%</td>
<td>5%</td>
<td>12%</td>
<td>5%</td>
</tr>
<tr>
<td>Dex-mes</td>
<td>93%</td>
<td>7%</td>
<td>3%</td>
<td>7%</td>
<td>-14%</td>
<td>13%</td>
<td>23%</td>
<td>6%</td>
</tr>
<tr>
<td>4a</td>
<td>78%</td>
<td>4%</td>
<td>-16%</td>
<td>-19%</td>
<td>-28%</td>
<td>1%</td>
<td>2%</td>
<td>-11%</td>
</tr>
<tr>
<td>4b</td>
<td>74%</td>
<td>21%</td>
<td>17%</td>
<td>24%</td>
<td>6%</td>
<td>31%</td>
<td>%</td>
<td>21%</td>
</tr>
<tr>
<td>Replication experiments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cortisol</td>
<td>69%</td>
<td>-16%</td>
<td>-15%</td>
<td>-23%</td>
<td>-12%</td>
<td>16%</td>
<td>-8%</td>
<td>-10%</td>
</tr>
<tr>
<td>Dex-mes</td>
<td>93%</td>
<td>3%</td>
<td>-11%</td>
<td>-2%</td>
<td>3%</td>
<td>46%</td>
<td>13%</td>
<td>9%</td>
</tr>
<tr>
<td>4a</td>
<td>78%</td>
<td>-1%</td>
<td>-8%</td>
<td>-6%</td>
<td>0%</td>
<td>37%</td>
<td>8%</td>
<td>5%</td>
</tr>
<tr>
<td>4b</td>
<td>74%</td>
<td>-14%</td>
<td>-33%</td>
<td>-22%</td>
<td>-10%</td>
<td>-5%</td>
<td>-2%</td>
<td>-14%</td>
</tr>
</tbody>
</table>

The kinetics of the reaction were considered to be rapid due to the fact that after one hour the maximum binding was already attained (data not shown). For cortisol, binding to the GR was totally recovered, confirming that cortisol binds reversibly to the receptor. However, although the fact that compounds 4a and 4b were designed as irreversible binders to the GR, we could not confirm this covalent linkage in the present experiments as the recovery was complete for 4a and significant for 4b (although not complete: 74% versus 21%). Strangely, we could not confirm the published results of dexamethasone mesylate as being a covalent binder (according to reference 10, the pre-incubation with dexamethasone mesylate reduced the ability of the receptor by 75% to bind [3H]-dexamethasone), as in our hands the recovery of dexamethasone mesylate was almost complete. Potential causes could have been 1) the presence of β-mercaptoethanol in the incubation buffer solutions used by Cerep, 2) a decomposed form of dexamethasone mesylate in
which the mesylate group would be cleaved prior to performing the experiments, or 3) differences in the protein sequence of the GR depending on the species from which the protein has been extracted. To exclude the first two possibilities, all experiments were repeated using buffer solutions without β-mercaptoethanol, and also using a new batch of dexamethasone mesylate (the original batch was supplied by ARC, the second batch was synthesized from dexamethasone according a method as described by Simons and coworkers). Results are shown in the second part of Table 2 (‘Replication experiments’) and confirm the earlier findings. The two different batches of dexamethasone mesylate produce the same results, in the sense that a total recovery of GR binding was observed without blockage of the receptor by the compound. In addition, β-mercaptoethanol does not seem to influence the reversibility of dexamethasone mesylate as well as compounds 4a and 4b.

The dexamethasone mesylate binding experiments performed by Simons and coworkers were performed on the glucocorticoid receptor extracted from rat hematoma tissue culture cells, while the present experiments are performed on human IM-9 cell-line cytosolic preparations. In the work done by Simons, degradation experiments identified Cys as the target for dexamethasone mesylate covalent binding. In the crystal structure of the human GR with GSK866, this cysteine has been mutated to a Gly and is located in close proximity to the dichlorophenyl ring of GSP866 and to the C-21 atom of the dexamethasone ligand (Figure 4). Interestingly, the crystal structure of the GR/dexamethasone complex reveals binding of second steroid-like molecule (CHAPS, see Figure 4), also located in very close proximity of this Cys, indicating that alternative binding modes are observable in the case of the GR receptor. It might therefore be possible that the discrepancy with the work of Simons and coworkers could be attributed to undocumented differences in experimental conditions, thereby exploring alternative binding modes of which the details are not yet understood.
Figure 4. Comparison of the binding of dexamethasone mesylate ('Dex-mes', green-colored carbon atoms) and GSK866 (purple-colored carbon atoms) projected into the crystal structure of the GSK866. Also shown is the binding of CHAPS (cyan-colored carbon atoms) as observed in the structure of the dexamethasone complex. The three cysteine residues which are located in the vicinity of the ligand-binding pocket are highlighted by yellow spheres. Finally, Gly_{638} is indicated by a purple sphere. In the sequence of the human and rat GR, this glycine is replaced by a cysteine. The docking pose of dexamethasone mesylate was generated starting from the crystal structure of dexamethasone in complex with the ligand-binding domain of the GR receptor, and manually
adding the mesylate sidechain whilst keeping the conformation of this sidechain in a low energy conformation.

The current experiments cannot exclude, nor confirm, that dexamethasone mesylate can bind covalently to another cysteine residue not necessary located in the ligand-binding pocket. In preliminary and unpublished mass spectroscopy experiments, we identified dexamethasone mesylate to bind covalently to Cys\textsubscript{622}, but further research around the exact mechanism is needed to understand and confirm these findings.22 Initial docking models of dexamethasone mesylate in the ligand-binding domain of the GR do not reveal a close contact between the mesylate group and Cys\textsubscript{622} or Cys\textsubscript{643}, respectively, but rather a potential contact with Cys\textsubscript{736} (see Figure S2 of the Supplementary Material). However, more refined docking studies as well as elongated molecular dynamics simulations will be essential to validate these hypotheses.

Acknowledgements

This work was supported by a IOF-POC grant from the University of Antwerp and an O&O project from the Flemish IWT.

References and notes

13. Catalog reference 0469

18. ref ARCD 0206, batch 120301.

21. 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate

22. Molecular graphics analysis of the crystal structure of the GR binding domain in complex with GSK866 confirms the location of Cys$_{622}$ in proximity of the GSK866 ligand. However, while Cys$_{643}$ is positioned in close proximity of the 2,6-dichlorophenyl sidechain of GSK866 (see Figure 2), Cys$_{622}$ is located along the 4-fluorophenylpyrazole side of GSK866 with the thiol group pointing outwards into the solvent. A close-up on GSK866 and both cysteines is shown in Figure S3 of the Supplementary Material.
Figure 1

![Molecular structures](image)

GSK866 (pdb-code 3E7C)

(pdb-code 3K22)

(pdb-code 3K23)

Mapracorat
(no pdb structure available)
Figure 3

1 (GSK866)

\[
\begin{align*}
R^1 & \quad 2 \\
3a & \quad 3b \\
4a & \quad 4b \\
5 &
\end{align*}
\]

with \(R^2 = \)
Scheme 1

6 → a) 96% → 7 → b) 89% → c) 94% → d) 78% → e) 91-99% → 8

f) → 9

g) 37-66% → 10

h) 80-100% → 11

i) 85-95% → 13
Scheme 2

11 \rightarrow a) \rightarrow 2

14 \rightarrow b) \rightarrow \left[\begin{array}{c}
\text{15} \\
\end{array}\right] \rightarrow c) \rightarrow 16
Scheme 4

\[\text{11} \overset{a)}{\rightarrow} \text{20} \]

\[\text{11} \overset{b)}{\rightarrow} \text{21} \quad (59-77\%) \]

\[\text{21} \overset{c)}{\rightarrow} \text{4a} \quad (53-69\%) \]
Supplementary Material
Click here to download Supplementary Material: supplementary material.docx