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Chromograam A (CGA) has been localized to the large dense cored vesicles (LDV) of  sympathetic neurons SDS-PAGE and lmmunoblotlmg of 
soluble LDV proteins hem ox and dog adrenergic neuronal cell bodies, unonb and nerve terminals, revealed an increasing number of CGA- 
immunoreactive forms, consistent with proteolyt~e processing dunng axonal transport. Spleme nerve electrical stimulauon (10 Hz, 2 rain) revealed 
that, apart from CGA these CGA-proeessmg products are released from the sheep spleen. The secretion of  CGA-defived fragments from 

sympathetic neurons might suggest a role in the regulation of synaptic transmission. 
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1. INTRODUCTION 

Chromogranin A (CGA), the major soluble protein 
of  adrenal medullary chromaffin granules, and present 
in various other neuroendocrine secretory granules [1- 
3], is extensively processed by specific endogenotts pro- 
teases, yielding smaller immunologically cross-reacting 
fragments [1,2,4-8], CGA has also been localized to the 
large dense cored vesicles (LDVs) of adrenergic neurons 
[9-14] which are embryonically related to the adrenal 
medulla [15]. Yet, although it is clear that different 
CGA storage granules may exhibit different cleavage 
patterns [4,5], very few data are available on CGA 
breakdown in sympathetic nerve axons [2,14] and al- 
most none in nerve terminals, presumably because of  
difficulties in obtaining the appropriate vesicle prepara- 
tions [16]. Moreover, while the release of  CGA from 
sympathetic neurons has already been demonstrated 
[17,19], no evidence has yet been provided for the re- 
lease of  CGA 9roducts from adrenergic nerve terminals. 
Since the functional significance of  CGA-derived pep- 
tide~ is a growing field of interest we have studied CGA 
breakdown in sympathetic neurons by comparing CGA 
immunoreactivity (CGA-IR) in preparations of LDYs 
from ox and dog sympathetic ganglia, splenic nerve and 
spleen, representing adrenergic cell bodies, axons and 
nerve terminals, respectively. In addition, the release of  
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CGA breakdown products from sheep spleen, following 
splenic nerve electrical stimulation, was investigated. 

2. MATERIALS AND METHODS 

Chromaflin granule~ were prepared from bovine, dog and sheep 
adrenal medulla as described pieviously and subjected to lysi~ [18] 
Partly ot highly purified LDVs from bovine stellate ganglia, dog celiac 
ganglia, spleme nerve (ox and dog) and spleen (ox, clog and sheep) 
were prepared essentially as ,'eported eallier [10,20-22]. After lysi~ of 
LDV-containing fractions in tile presence of inhibitors of the major 
classes of pretenses (Bio-Rad) and boihng lbr 5 ram, soluble proteins 
were subjected to SDS.ge~ electrophorebm (SDS-PAGE) and Hn- 
munoblotting. 

The i~olated ~heep spleen wa~ perfused essentially as prcvLoubly 
described [23]. Electrical stimulation with bipolar platinum electrodes 
was performed at 10 Hz for 2 mm at suprzmaximal voltage (200 mA, 
10 ~, 3 ms) m the presence ofphentolamme (10 -s M) to prevent spleen 
capsule contraction and the lelease of  residual blood. Perfu~ates con- 
taining protea~e mhtb, tor~ were immediately centnfug~ {3,000 xg~,J 
15 rain) to s~ ,ment  the blood cells. "ihe resaltin13 supernatant was 
boiled, dmlyzed, lyophilyzed and ~ubjected to SDS-PAGE (13% gels) 
and Western blotting, according to established procedure~ [24,25l. The 
antiserum employed (anti-WE 1-14; h400-hl,000),  rinsed in rabbits, 
is directed against a CGA peptide (CGA~,~_~:,~) common to various 
species [8,26]. lmmanodeteetion was performed u~ing biotinylated 
alkaline phosphatase or an lmmun-Lite Chemtlummeseent As.~ay 
(Bio-Rad), The degree of proteolyti¢ l~roccssmg of CGA in bovine 
tmsttes was estimated by laser densltometne scanning with an XL- 
Ultmsean (Pharmacia.LKB) in comparison with control fractions. 

3. RESULTS 

In partly purified LDV from bovine stellate ganglia 
and dog celiac - ':~ ~,..-, . . . . .  j ga .g-a ,  the native protein ~-ro -?~ ~n.~ 
and a predominant high molecular weight IR band (94 
kDa). but almost no smaller CGA fragments, could be 
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Fig. 1, Chromogranm A (t.,t.iA) immunorcactive patterns, obtained by SDS-PAGE and immuaoblottmg ofth¢ lysat¢ ofpartly and lughly purified 
LDV preparations and ehromaffin granules from ox (A) and dog (B). Preparauons of LD'V from bovine stell,'tt¢ ganglion (AI) and dog celiac 
ganglion (BI), representing adrenergic cell bodies, were cbtalned using D~O-suerose gradients Highly purified LDV from bovine spleme nerve 
(A2) as prepared with D,O-~ucrose gradients, and an LDV-enriched fraction (from an isopycnic sucrose gradient) of do~ splenic ner,,e (B2) 
represent adrcnerglc axons. Semi-purllied LDV prepatatiolaS flora bovine ~pleen (A3) and dog spleen (B3), containing adrenergic nerve terminals, 
were obtained by D,O-suerose gradient centrifugation and ~opycntc gradietlt eentnfugation, respectively. CGA immunoreaetivity was also studied 
in bovine (A4) and dog (B4) chromaffin granule ly~at¢. Aporoxlmately 35 ,~g proteins was loaded on the gel. Arrowheads i,dmat¢ the most 

prol~ament fragmellts 111 splenic nerve and spleen, the arrows indicate CGA. 

observed (Fig. 1, AI and B1). The high molecular 
weight band accounts for the majori ty of  IR as esti- 
mated by semi-quantitative evaluation (>75%). In 
highly purified axonal  LDV from bovine splenic nerve, 
the antiserum detected, in addition to the native CGA,  
lower molecular size immunoreactive forms (43, 40, 34, 
and 28 kDa; Fig. 1, A2) consistent with 45-50% proc- 
essing. In an L D ¥  fraction from dog splenic nerve, a 
similar pattern was observed with, in addition to CGA,  
a major  band at abou t  49 kDa and minor  bands at 60, 
34 and 28 kDa (Fig. 1, B2). In an LDV-enriehed frac- 
tion of  bovine and dog spleen, significant degradation 
o f  C G A  was detected. In bovine spleen (Fig. I, A3) 
degradation products  similar to those in bovine splenic 
nerve were found (40 and 43 kDa,  34 kDa  and 28 kDa),  
corresponding to 55-60% processing. For  dog spleen 
(Fig. 1, B3) the degradat ion pattern resembled that of  
splenic nerve, al though the ratio of  IR fragments dif- 
fered (60 kDa, major  band at 43 kDa, 34 and 29 kDa). 
When  the two species were compared,  a difference in 
process 'he products  was observed, probably  due to in- 
terspeeles variations. The IR pattern o f  LDV from both 
ox and dog spleen closely resembled those of  the respec., 
tive chromaffin granule lysates (Fig. 1, A4 and B4). 

Apart  fl'ona the major  C G A  band (70-75 kDa), C G A  
fragments o f  43 and 30 kDa  were observed in a micro- 
somal fraction of  sheep spleen (Fig. 2, lane 1). Interest- 
ingly, a similar degradat ion pattern was observed in an 
LDV-containing fraction o f  sheep spleen (Fig. 2, lane 
3). Analysis of the perfusate o f  isolated perfused she6p 
spleen after stimulation in the presence ofphento lamine  
(10 -s M) at 10 Hz (2 rain) showed the same CGA-1R 
fl'agmems (e.g. 43 and 30 kDa) as in the semi-purifiecs 
LDV of  the spleen (Fig. 2, lane 2). 

4. D I S C U S S I O N  

Subcellular fractionation of  sympathetic ganglia, 
splenic nerve and spleen revealed the presence o f  C G A -  
IR in the LDV and not in SDV, as reflected by its 
co-distribution with different LDV markers [9-13]. To  
investigate C G A  processing in sympathetic neurons, 
C G A - I R  was studied in preparations of  LDV from 
adrenergic cell bodies~ axons and nerve terminals, in the 
presence of  the major  peptidase inhibitors. In ,~ semi- 
purified fraction o f  perikarial LD~ t, C G A  fragments 
were hardly detected. However,  the high molecular 
weight band (94 kDa)  was probably the C G A - I R  pro- 
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Fig, 2. CGA immuno~active forms in ( I )  a micrc~oma] fraction of 
sheep spleen° (2) a ~h~:cp spleen peffu~ate followmB I0 Hz sumulatton 
(2 mm, 1O -~ M ph~ntol,,nm¢), (3) aci LDV-enrichcd f~e:ion at, ob- 
tained by D,O-suerose gradient eentrifugation, and t4) a sh~p ¢hro- 
m,ffin granule l),sate 35/ag prote~,s were loaded tn each lane. Arrow- 

heads indicate major fragment~; the arrow indicates CGA. 
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teoglycan by analogy with the chromaffin granule lysate 
[4,8]. In highly purified axonal LDV, part  of  the native 
C G A  appears to be degraded, while in LDV from sym- 
pathetic nerve terminals a very similar breakdown-pat-  
tern could be observed. Although it is clear that  C G A  
is highly processed, the observed degradation pattern of  
C G A  obtained appears to be dependent on the nature 
of  the antiserum used, The intensity o f  immunostained 
CGA-derived bands apparently differed in chromaftin 
gramdes and splenic nerve LDV. In mature  chromaffin 
granules, CGA appeared to be processed by en- 
dogenous proteases to a higher degree (60-70%) than in 
axonal (45-50%) and nerve terminal vesicles (55-60%). 

It has already been shown that  C G A  of  purified 
splenic nerve vesicles is processed to a more limited 
degree than in chromaffin granules, probably reflecting 
incomplete LDV-matura t ion  1"2,14]. 

In the presence of  peptidase inhibitors, proteolytic 
degradation has been shown to be almost absent and the 
apparent  processing therefore does not occur during 
lysis or  isolation procedures [4,27,28]; thus these frag- 
ments are most likely formed during axonal transport.  
Moreover, using the same region-specific antibodies, 
the pattern of  proteolysis ,,vas shown to be essentially 
reproducible, excluding the possibility o f  artifactual 
cleavage [8,27]. Very little is known about  the nature 
and timing of  specific proteases that  are involved in the 
CGA processing, which seems to be a complex pH- 
regulated process [5,28]. Since the processing patterns 
of  LDVs and chromaffin granules are comparable,  sim- 
ilar proteolytic enzymes may be present in both types 
of  organelles. 

Splenic nerve, stimulation of  isolated perfused sheep 
spleen revealed a significant and Ca:*-dependent aug- 
mentation o f  NA.  and C G A  release (to be published). 
In the present study, the electrical st imulation evoked 
release of  C G A  from the isolated sheep spleen revealed 
the presence of  CGA products in the perfusate, which 
apparently matched those ir, LDV. This indicates that  
C G A  fragments, which are formed during intracellular 
transport  from the cell body to the nerve terminal, are 
released by ¢xocytosis upon sylnpathetic neuronal  acti- 
vation. Since CGA-derived peptides have been shown 
to modulate  CA release from chromaffin cells [29], they 
might also be involved in the regulation o f  sympathetic 
neurotransmission. 
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