Search for supersymmetry in events with opposite-sign dileptons and missing transverse energy using an artificial neural network

S. Chatrchyan et al. *
(CMS Collaboration)

(Received 5 January 2013; published 2 April 2013)

In this paper, a search for supersymmetry (SUSY) is presented in events with two opposite-sign isolated leptons in the final state, accompanied by hadronic jets and missing transverse energy. An artificial neural network is employed to discriminate possible SUSY signals from a standard model background. The analysis uses a data sample collected with the CMS detector during the 2011 LHC run, corresponding to an integrated luminosity of 4.98 fb$^{-1}$ of proton-proton collisions at the center-of-mass energy of 7 TeV. Compared to other CMS analyses, this one uses relaxed criteria on missing transverse energy ($E_T > 40$ GeV) and total hadronic transverse energy ($H_T > 120$ GeV), thus probing different regions of parameter space. Agreement is found between standard model expectation and observations, yielding limits in the context of the constrained minimal supersymmetric standard model and on a set of simplified models.

DOI: 10.1103/PhysRevD.87.072001 PACS numbers: 12.60.Jv, 13.85.Rm, 14.80.Ly

I. INTRODUCTION

One of the most natural extensions of the standard model (SM) of particle physics is supersymmetry (SUSY) [1–8]. Supersymmetry allows for gauge coupling unification at the energy of 1016 GeV, provides a good dark matter candidate [lightest supersymmetric particle (LSP)] [9], is a necessary component to explain quantum gravity in the framework of string theory, and automatically cancels the quadratic divergences in radiative corrections to the Higgs boson mass. For every particle in the standard model, SUSY introduces a superpartner, the “sparticle,” with spin differing by 1/2 unit from the SM particle. There are theoretical arguments that suggest sparticle masses could be less than ~ 1 TeV [7,8] making the experiments at the Large Hadron Collider (LHC) an ideal place for their discovery.

With the successful 2011 LHC run, an integrated luminosity of 4.98 fb$^{-1}$ in collisions at 7 TeV center-of-mass energy has been collected with the Compact Muon Solenoid (CMS) experiment. This data set is used to search for the presence of SUSY particles in events with two opposite-sign leptons (electrons and muons) in the final state, utilizing an artificial neural network (ANN). Two opposite-sign leptons can be produced in a SUSY cascade through the decay of neutralinos and charginos. Assuming that R parity is conserved [10], a stable, weakly interacting LSP exists, resulting in a missing transverse energy (E_T) signature. The amount of missing transverse energy depends on the mass splittings among the heavier sparticles. So far, typical dilepton SUSY searches in CMS have required several jets with large transverse momentum, which correspond to large values of H_T, the scalar sum over the transverse momenta of all jets satisfying the jet selection, and large missing transverse energy to discriminate a SUSY signal from the very large SM backgrounds. Compared with previous CMS searches [11,12], this analysis uses relaxed criteria on missing transverse energy ($E_T > 40$ GeV) and H_T ($H_T > 120$ GeV). For SUSY models that yield events with large E_T and H_T, the ANN’s performance is comparable to the data analyses using large E_T and H_T. Hence, for such models the additional power of a multivariate technique is not required to discriminate between new physics and the SM backgrounds. However, for SUSY models that yield low-E_T or low-H_T signatures, the discriminating power of the ANN helps to suppress the large SM backgrounds.

The results are interpreted in the context of the constrained minimal supersymmetric standard model (CMSSM [13,14]), and a class of simplified model scenarios (SMS) [15,16]. For illustration purposes, the benchmark CMSSM point LM6 ($m_0 = 85$ GeV, $m_{1/2} = 400$ GeV, $\tan \beta = 10$, $A_0 = 0$ GeV) is used throughout the paper. In the class of SMS considered, gluinos are pair produced, with one of them decaying as $g \rightarrow \tilde{X}_3^0 jj \rightarrow \tilde{X}_2^0 \ell^+ \ell^- jj$ and the other as $g \rightarrow \tilde{X}_2^0 jj$. Here \tilde{X}_2^0 is the second-lightest neutralino, \tilde{X}_1^0 is the lightest neutralino, and the LSP, and $\ell = e, \mu, or \tau$ with equal probability. This SMS thus always leads to a pair of opposite-sign leptons in the final state, in addition to the jets and E_T. The SMS is fully described by the following parameters: the masses of the gluino (m_g), and the LSP (m_{LSP}), along with the neutralino mass in the gluino decay which is set to $m_{\tilde{X}_3^0} = (m_g + m_{\text{LSP}})/2$.

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
II. CMS DETECTOR

A detailed description of the CMS Detector can be found elsewhere [17]. A right-handed coordinate system is used with the origin at the nominal interaction point. The x axis points to the center of the LHC ring, the y axis is vertical and points upward, and the z axis points in the direction of the counterclockwise proton beam. The azimuthal angle ϕ is measured with respect to the x axis in the x-y plane and the polar angle θ is defined with respect to the z axis, while the pseudorapidity is defined as $\eta = -\ln\left[\tan(\theta/2)\right]$. The central feature of the CMS apparatus is a superconducting solenoid, of 6 m internal diameter, that produces a magnetic field of 3.8 T. Located within the field volume are the silicon pixel and strip tracker, and the barrel and endcap calorimeters (|η| < 3), composed of a crystal electromagnetic calorimeter (ECAL) and a brass and scintillator hadron calorimeter (HCAL). Calorimetry provides energy and direction measurements of electrons and hadronic jets. The detector is nearly Hermetic, allowing for energy balance measurements in the plane transverse to the beam directions. Outside the field volume, in the forward region (3 < |η| < 5), there is an iron and quartz-fiber hadron calorimeter. The steel return yoke outside the solenoid is instrumented with gas-ionization detectors used to identify muons. The CMS experiment collects data using a two-level trigger system, the Level-1 hardware trigger [18] and a high-level software trigger [19].

III. DATA SAMPLES, TRIGGER, AND EVENT SELECTION

Data events are selected using a set of dilepton triggers, which require the presence of at least two leptons, either two muons or two electrons or a muon-electron pair. In the case of the double-muon trigger, the selection is asymmetric with a transverse momentum (p_T) threshold of 13 GeV for the leading (higher-p_T) muon and 8 GeV for the subleading one. In the case of the double-electron trigger, the selection is asymmetric with a threshold applied to the transverse energy of a cluster in the ECAL. The thresholds are fixed to 17 GeV (8 GeV) for the leading (subleading) electron energy. For the muon-electron trigger, the threshold on the transverse momentum, p_T (transverse energy, E_T) is 8 GeV (17 GeV) for the muon (electron). For all triggers, additional identification and isolation criteria are also applied.

Muon candidates are reconstructed [20] by combining the information from the inner tracking system, the calorimeters, and the muon system. Electron candidates are reconstructed [21] by combining the information from the ECAL with the silicon tracker, using shower shape and track-ECAL-cluster matching variables in order to increase the sample purity. Jets are reconstructed using the anti-k_T clustering algorithm [22] with a distance parameter $\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2} = 0.5$. The inputs to the jet clustering algorithm are the four-momentum vectors of reconstructed particles. Each such particle is reconstructed with the particle-flow technique [23] that combines information from several subdetectors. The measured jet transverse momenta are corrected with scale factors derived from simulation; to correct for any differences in the energy response between simulation and data, a residual correction factor derived from the latter is applied to jets in the data [24]. In general, $\mathcal{E}_T = -\sum p_T$, where the sum is taken over all final-state particles reconstructed in the CMS detector. The total transverse energy ($\sum E_T$) of the event is calculated as the scalar sum of the transverse energies of leptons and jets. The total hadronic transverse energy, ($H_T = \sum p_T$), is computed as the scalar sum of the transverse energies of all reconstructed jets in the event satisfying the jet selection criteria described below.

Simulated pp collision events are produced with the PYTHIA6.4.22 [25] generator [using underlying event tune Z2 which is identical to the Z1 tune [26] except that Z2 uses the CTEQ6L parton distribution functions (PDF) while Z1 uses CTEQ5L] for QCD, WW, ZZ, and WZ samples. For $t\bar{t}$, Drell-Yan, and W + jets samples the MADGRAPH 4.4.24 [27] generator is used. Events are then processed with a simulation of the CMS detector response based on GEANT4 [28]. Multiple proton-proton interactions are superimposed on the hard collision, and all simulated event samples are reweighted according to the distribution of the number of reconstructed primary vertices in data. Simulated events are reconstructed and analyzed in the same way as data events. Simulated event samples are used to train the ANN, to extrapolate background estimates from a background-enriched control region in data to the expected signal-enriched region, and to estimate systematic uncertainties.

Noncollision backgrounds are removed by applying quality requirements ensuring the presence of at least one reconstructed primary vertex [29]. Events are required to have at least two opposite-sign leptons, both electrons or muons, or an electron-muon pair, with $p_T > 20$ GeV and |η| < 2.4, and at least two jets with $p_T > 30$ GeV and |η| < 2.4. Jets are required to satisfy the quality criteria described in Ref. [30]. Leptons are required to be isolated from significant energy deposits and tracks in a cone of radius $\Delta R = 0.3$ around the direction of the lepton. The relative combined isolation, defined as $F^{\text{rel}}_\text{iso} = (\sum_{\text{tracks}} p_T + \sum_{\text{ECAL}} E_T + \sum_{\text{HCAL}} E_T)/p_T$, is required to be <0.2 for muons and <0.08 for electrons, with the latter criterion being more strict in order to reject jets misidentified as electrons.

IV. SIGNAL TO BACKGROUND DISCRIMINATION

The ANN in this analysis is used to separate SUSY signals from SM background events, exploiting correlations among the discriminating variables, and thus providing improved results with respect to the use of sequential
search for supersymmetry in events with...

Table I. Expected number of signal and background (bkg.) events after the event selection criteria, and after the candidate event selection criteria for events in the signal region are applied. The next-leading-order (NLO) cross section is used for the CMSSM benchmark point LM6 yield determination. The data set resulting from the candidate event selection is used as input to the ANN. The uncertainties quoted are statistical only.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Event selection</th>
<th>Signal region</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\bar{t}t)</td>
<td>17395 ± 60</td>
<td>8271 ± 40</td>
</tr>
<tr>
<td>(Z + \text{jets})</td>
<td>507316 ± 1200</td>
<td>4740 ± 60</td>
</tr>
<tr>
<td>(W + \text{jets})</td>
<td>21094 ± 740</td>
<td>416 ± 40</td>
</tr>
<tr>
<td>WW</td>
<td>1204 ± 10</td>
<td>15 ± 1</td>
</tr>
<tr>
<td>WZ</td>
<td>1750 ± 8</td>
<td>20 ± 1</td>
</tr>
<tr>
<td>ZZ</td>
<td>1225 ± 4</td>
<td>13 ± 1</td>
</tr>
<tr>
<td>QCD</td>
<td>19578 ± 7500</td>
<td>1313 ± 260</td>
</tr>
<tr>
<td>Total SM bkg.</td>
<td>569562 ± 7700</td>
<td>14797 ± 280</td>
</tr>
<tr>
<td>LM6</td>
<td>71 ± 1</td>
<td>54 ± 1</td>
</tr>
</tbody>
</table>

Selections. Because of the presence of isolated leptons, the main SM background contributions to this analysis involve the production of \(\bar{t}t\) and \(Z + \text{jets}\). The QCD multijet processes with two misidentified (fake) leptons, and \(W + \text{jets}\) events with one misidentified lepton, can also be part of the background, but are significantly reduced by applying additional candidate event selection criteria described below. Finally, two leptons in the final state could be produced by \(WW\), \(WZ\), or \(ZZ\) decays but their contributions are found in simulation to be negligible compared to the main backgrounds.

The candidate event selection criteria, which are imposed before the ANN training, are the following: events are required to have \(\not{E}_T > 30 \text{ GeV}\), the distance \(\Delta R\) between either of the two leading opposite-sign leptons and the closest jet is required to be \(>0.2\), and the dilepton mass \(M_{\ell\ell}\), formed from the two leading opposite-sign leptons, is required to be larger than 10 GeV. These criteria reject the vast majority of the background, while retaining most of the signal as shown in Table I for CMSSM benchmark point LM6. This greatly facilitates the ANN training and optimization by excluding a region heavily dominated by background in which few if any signal events are present. The signal region is defined by the candidate event selection criteria with an additional requirement on the ratio of the dilepton transverse energy \(\sum E_T^{\text{lepton}}\) to the total transverse energy (as defined in Sec. III) to be less than 0.4.

The ANN training samples are based on simulated events. A mixture of \(\bar{t}t\), \(Z + \text{jets}\), \(W + \text{jets}\), and QCD simulated samples are used as the SM background. For the signal, a class of SMS scenarios [15] is used. For the ANN training, grid points close to the diagonal \((m_\chi = m_{\text{LSP}}}) are used with \(|m_\chi - m_{\text{LSP}}| < 400 \text{ GeV}\). These points are chosen since they exhibit low \(\not{E}_T\) or \(H_T\) thresholds: more than 90% of the events have \(\not{E}_T < 200 \text{ GeV}\) or \(H_T < 600 \text{ GeV}\).

Several topological and kinematical variables are considered according to their potential to discriminate SM backgrounds from possible SUSY signals, taking into account the correlations among them. The variables studied are based on the general production and decay characteristics of many supersymmetric processes and are not tuned to a specific model.

Using different combinations of candidate input variables, several ANNs are constructed and compared in order to select the optimal configuration. The differences in performance are studied and quantified in terms of the signal selection efficiency as a function of background rejection. A network with seven input variables, those with the smallest degree of correlation among themselves and with the highest discriminating power, shows the best performance. The ANN variable importance is defined as sum of the weights squared of the connections between the variable’s neuron in the input layer and the ones in the first hidden layer. Table II lists the seven input ANN variables along with their description, and their relative importance after the ANN training.

V. ANN OUTPUT FOR SM BACKGROUND

In order to quantify the level of agreement and the significance of a possible excess between data and SM expectation, it is important to provide a robust estimate of the ANN output distribution in the signal region under the SM-only hypothesis along with its systematic uncertainty.

The approach used to estimate the ANN prediction for the SM-only hypothesis from data is as follows. A signal region (SR) is defined by the set of the candidate event selection requirements and the additional criterion on the fraction of transverse energy carried by the dilepton system as described in Sec. III. A primary control region (CR) is defined by inverting two of the signal event selection criteria, the
total missing transverse energy and the selection cut on the fraction of transverse energy carried by the dilepton system. This region is chosen so that it is dominated by SM processes. Signal contamination in the primary control region is small; for the LM6 benchmark point it is less than 0.03%, and less than 0.4% for SMS points close to the diagonal ($m_\gamma = m_{\text{SP}}$). The ANN output distribution in the primary control region is then obtained using data ANN(SM)$_{\text{data}}$

Next, an extrapolation ratio, $R_{\text{ext}} = \frac{\text{ANN(SM)$_{\text{MC}}$}}{\text{ANN(SM)$_{\text{CR}}$}}$, obtained from simulated events, is defined for each bin in the ANN output distribution as the ANN output for the SM-only hypothesis in the signal region divided by the ANN output for the SM-only hypothesis in the control region. The extrapolation factor, R_{ext}, exhibits a smooth monotonic behavior, as shown in Fig. 1.

Finally, the ANN output from data in the control region, where only SM physics is assumed to be present, is multiplied by the extrapolation factor, R_{ext}, to predict the ANN output SM in the signal region, ANN(SM)$_{\text{prediction}}$

ANN(SM)$_{\text{prediction}}$ = ANN(SM)$_{\text{data}}$ × ANN(SM)$_{\text{CR}}$ = ANN(SM)$_{\text{MC}}$. \hspace{1cm} (1)

The primary control region is further subdivided into a $t\bar{t}$ enriched one with $E_T > 30$ GeV and $M_{\ell\ell} > 75, 105$ GeV, denoted as “control region A,” and separately into a Z + jets enriched one with $E_T > 30$ GeV or 75 GeV < $M_{\ell\ell}$ < 105 GeV, denoted as “control region B.” These are not used in the analysis. However they provide quality control cross-checks (level of agreement between data and simulation) for the two main backgrounds that affect the analysis.

Figure 2 compares the ANN output distributions of data and simulated events in the control regions as defined above. Agreement between data and simulation is observed both in the primary control region used to define the ANN output, as well as in the $t\bar{t}$ and Z + jets dominated control regions A and B.

Similar agreement between data and simulation for the ANN input variables in the control region is observed as well. This helps to confirm that the simulation is appropriate to train the ANN and adequate to be used for the estimation of systematic uncertainties.

VI. SYSTEMATIC UNCERTAINTIES

Systematic uncertainties of the ANN output prediction for the SM-only hypothesis, obtained as described in Sec. V, are estimated with simulated data using the following procedure. A systematic effect is introduced into the simulated data for all events in the sample before any preselection is applied. The nominal SM extrapolation factor R_{ext} is then used to obtain a new ANN output prediction for the signal region corresponding to the systematic effect under study. Next, the ANN output prediction, corresponding to the systematic alteration, is compared against the ANN output for the original sample, without any systematic effects introduced. A binned ANN output distribution is studied for this analysis. The relative difference in ANN outputs for each bin is assigned as a bin-by-bin systematic uncertainty. Similarly, the relative difference in the integrated number of events above a certain ANN output is assigned as a systematic uncertainty to the number of signal-like events. Finally, for each bin, the relative differences for all systematic effects studied are added in quadrature. This results in a bin-by-bin total systematic uncertainty in the ANN output prediction. In a similar manner the relative differences in the integrated number of events above some ANN value are added in quadrature yielding the total systematic uncertainty on the number of signal-like events.

The overall systematic uncertainties corresponding to the seven input variables used for the ANN construction, as well as the uncertainties in the cross sections of the SM backgrounds, are shown in Table III for the ANN optimal selection.

The magnitude of the systematic alterations for the jet energy scale is taken from dedicated CMS measurements [24]. While the clustered energy scale of E_T is known to the 3% level in CMS and the unclustered energy scale for E_T is known to within 10% [31], this analysis uses a conservative 10% for the overall E_T systematic uncertainty.

For the input ANN variables for which there is no dedicated CMS measurement, the level of agreement between data and simulation in the control region is used to obtain an estimate of the systematic uncertainty. Therefore, the control region is used to constrain the systematic uncertainties in these cases. Given the above, the difference
TABLE III. Systematic uncertainties considered in the predicted background, along with their magnitude, and the impact they have on the final ANN output prediction when the signal selection requirement at 0.95 is applied.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Syst. uncertainty</th>
<th>Syst. error (%) on the SM prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Missing transverse energy \not{E}_T</td>
<td>±10%</td>
<td>26</td>
</tr>
<tr>
<td>Leading, subleading jet p_T</td>
<td>±3%</td>
<td>10</td>
</tr>
<tr>
<td>$\sum_{\text{sublead}} p_T$</td>
<td>±2%</td>
<td>9</td>
</tr>
<tr>
<td>Transverse mass M_T</td>
<td>±5%</td>
<td>6</td>
</tr>
<tr>
<td>Dilepton mass $M_{\ell\ell}$</td>
<td>±1%</td>
<td>1</td>
</tr>
<tr>
<td>Number of jets N_{jets}</td>
<td>±0.5%</td>
<td><1</td>
</tr>
<tr>
<td>tt cross section</td>
<td>±4%</td>
<td><1</td>
</tr>
<tr>
<td>QCD, $W +$ jets, $Z +$ jets cross sections</td>
<td>±50%, ±3%, ±3%</td>
<td><1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>30</td>
</tr>
</tbody>
</table>
between data and simulation for the migration of events from the one-jet to the two-jet bin is estimated to be 0.5%. Similarly, the systematic uncertainty on the ratio of the lepton to the total transverse energy is estimated to be 2%, and the M_T uncertainty is estimated to be 5%. The dilepton mass scale uncertainty of 1% is taken from the CMS measurements of the Z peak [32].

The relative fraction of $t\bar{t}$ and $Z +$ jets backgrounds is observed to vary as a function of the ANN output, as well as across the signal and control regions. In order to account for any remaining differences, the cross sections of all background components are left to vary within their uncertainties, taken from the recent CMS measurements for the $t\bar{t}$ [33] cross section, and using a conservative 50% uncertainty on the QCD cross section. The $Z +$ jet cross section uncertainty (<3%) [32], and the $W +$ jet cross section uncertainty <3% [32] produce a negligible systematic effect on the ANN output.

The systematic uncertainties associated with the signal acceptance and efficiency (ANN selection), along with their magnitude, are summarized in Table IV. The uncertainty on the lepton triggers and the lepton isolation are the same as the ones estimated in Ref. [34]. The relative ANN uncertainty for the signal is lower than the corresponding uncertainty for the background, due mainly to the different ANN shapes for these two populations (signal and background).

VII. PERFORMANCE OF THE ANN

The ANN output after the training is shown in Fig. 3 for the signal (blue) and SM background (red) samples; the efficiency and purity of the selected samples are also shown as a function of the ANN output requirement.

When statistical and systematic uncertainties are taken into account, the ANN output requirement yielding the best expected exclusion limit in the SMS plane is ANN > 0.95. The expected number of SM and signal events for the CMSSM benchmark point LM6 after imposing the ANN output requirement of >0.95 are shown in Table V. The remaining backgrounds are dominated by $t\bar{t}$ events in the dilepton final state, followed by $Z +$ jets production at a much smaller level.

VIII. RESULTS

The seven input ANN variables are shown in Fig. 4 for simulated and data events, after the candidate event selection criteria are applied and for signal events. Data and

TABLE IV. Systematic uncertainties on signal acceptance and efficiency.

<table>
<thead>
<tr>
<th>Source of systematic</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lepton triggers ($p_T > 20$ GeV)</td>
<td>3%</td>
</tr>
<tr>
<td>Lepton isolation</td>
<td>5%</td>
</tr>
<tr>
<td>Integrated luminosity</td>
<td>2.2%</td>
</tr>
<tr>
<td>ANN selection</td>
<td>17%</td>
</tr>
<tr>
<td>Total</td>
<td>18%</td>
</tr>
</tbody>
</table>

FIG. 3 (color online). Left: ANN output for the SM background (red bands) and SMS low E_T-low H_T events (blue line). Right: efficiency (red) and purity (blue) vs the minimum ANN output value for SMS low E_T-low H_T events in the signal region.

TABLE V. Expected number of events for signal and SM background and for the ANN output greater than >0.95. The NLO cross section is used for the CMSSM benchmark point LM6.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Events with ANN > 0.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t\bar{t}$</td>
<td>125 ± 38</td>
</tr>
<tr>
<td>$Z +$ jets</td>
<td>14 ± 4</td>
</tr>
<tr>
<td>$W +$ jets, WW, WZ, ZZ, QCD</td>
<td><1</td>
</tr>
<tr>
<td>Total SM bkg.</td>
<td>140 ± 42</td>
</tr>
<tr>
<td>LM6</td>
<td>40 ± 1</td>
</tr>
</tbody>
</table>
There is agreement between expectation and observation at a 68% C.L. Figure 6 shows the E_T and H_T distributions for data and simulated events in the signal-like region. These figures illustrate that this analysis accepts signal-like events with E_T as low as 40 GeV or H_T as low as 120 GeV—regions not explored yet by other CMS analyses.

Finally, the observed and expected number of events are translated into limits on SUSY parameter space. The 95% C.L. upper limits are computed using a hybrid CL_s.
method with profile likelihood test statistics, and lognormal distributions for the background expectation [35,36]. The uncertainties in the NLO + NLL cross sections from the parton distribution functions [37–41], the choice of the factorization and renormalization scale, and α_s are taken into account for each point and are evaluated according to the PDF4LHC recommendation [42]. A constant signal acceptance systematic uncertainty of 18% is assumed for each point. As described previously, the contamination of the signal in the control region is negligible and hence not taken into account in the limit setting.

The exclusion limits on SMS models are depicted in Fig. 7, and in the $(m_0, m_{1/2})$ CMSSM plane are shown in Fig. 8 [43].

As discussed earlier, for SUSY models that yield events with large E_T (CMSSM with $m_0 < 1000$), the ANN’s performance is comparable to the data analyses using large E_T and H_T, and in some cases worse, given that the ANN has been trained with models characterized by low E_T and H_T. For SUSY models that yield events with low E_T and/or H_T (CMSSM with $m_0 > 1000$ and for SMS models close to the diagonal), the ANN’s performance is better.
from 1000 to 2500 GeV, depending on the value of squark mass in the excluded models varies in the range of gluino masses below 800 GeV. For gluino masses above 800 GeV, no limits on the mass of LSP can be set.

In the case of the CMSSM limits and for a specific choice of parameter values, squark masses below 700 GeV are excluded at 95% C.L., and similarly gluino masses below 700 GeV are excluded for the region $m_0 < 700$ GeV. In the region $1000 < m_0 < 3000$ GeV, gluino masses below 300 GeV are excluded, while the squark mass in the excluded models varies in the range from 1000 to 2500 GeV, depending on the value m_0. In the case of the SMS limits, for gluino masses below 800 GeV, LSP masses below 400 GeV are excluded. For gluino masses above 800 GeV, no limits on the mass of LSP can be set.

FIG. 7 (color online). 95% C.L. exclusion limits on the simplified model scenarios with the ANN analysis. The acceptance (fraction of events surviving event selection and candidate event selection) × efficiency (fraction of events surviving ANN selection) (top) and 95% C.L. upper cross section limit (bottom) are shown for different gluino and neutralino masses. The region just below the diagonal is not considered due to inadequate initial state radiation modeling.

FIG. 8 (color online). Expected (blue) and observed (red) 95% C.L. exclusion limit for the ANN analysis (for ANN output > 0.95) in the CMSSM plane. The one σ experimental error around the expected limit and the one σ theoretical error around the observed limit are also shown.

IX. CONCLUSIONS

A search for supersymmetry in events with two opposite-sign leptons in the final state and with the use of an artificial neural network has been presented, using the 2011 data set collected with the CMS experiment. This search is complementary to the ones already published by the CMS Collaboration and yields comparable exclusion limits for high-E_T, high-H_T SUSY models. In addition, the significantly relaxed criteria on E_T and H_T with respect to the previously published analyses allows for the study of events not addressed by previous searches and provides an independent and complementary probe of this particularly challenging region of phase space. Agreement is observed between the expectation from the SM and the data, with no significant excess, which results in limits in the CMSSM (m_0, $m_{1/2}$) and SMS ($m_{	ilde{g}}$, $m_{\tilde{L}_{SP}}$) planes.

ACKNOWLEDGMENTS

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: the Austrian Federal Ministry of Science and Research; the Belgian Fonds de la Recherche Scientifique, and Fonds
voor Wetenschappelijk Onderzoek; the Brazilian Funding Agencies (CNPq, CAPES, FAPERJ, and FAPESP); the Bulgarian Ministry of Education, Youth and Science; CERN; the Chinese Academy of Sciences, Ministry of Science and Technology, and National Natural Science Foundation of China; the Colombian Funding Agency (COLCIENCIAS); the Croatian Ministry of Science, Education and Sport; the Research Promotion Foundation, Cyprus; the Ministry of Education and Research, Recurrent financing Contract No. SF0690030s09 and European Regional Development Fund, Estonia; the Academy of Finland, Finnish Ministry of Education and Culture, and Helsinki Institute of Physics; the Institut National de Physique Nucléaire et de Physique des Particules/CNRS, and Commissariat à l’Énergie Atomique et aux Énergies Alternatives/CEA, France; the Bundesministerium für Bildung und Forschung, Deutsche Forschungsgemeinschaft, and Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; the General Secretariat for Research and Technology, Greece; the National Scientific Research Foundation, and National Office for Research and Technology, Hungary; the Department of Atomic Energy and the Department of Science and Technology, India; the Institute for Studies in Theoretical Physics and Technology, Hungary; the Department of Atomic Energy and the World Class University program of NRF, Republic of Korea; the Lithuanian Academy of Sciences; the Mexican Funding Agencies (CINVESTAV, CONACYT, SEP, and UASLP-FAI); the Ministry of Science and Innovation, New Zealand; the Pakistan Atomic Energy Commission; the Ministry of Science and Higher Education and the National Science Centre, Poland; the Fundação para a Ciência e a Tecnologia, Portugal; JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); the Ministry of Education and Science of the Russian Federation, the Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, and the Russian Foundation for Basic Research; the Ministry of Science and Technological Development of Serbia; the Secretaría de Estado de Investigación, Desarrollo e Innovación and Programa Consolider-Ingenio 2010, Spain; the Swiss Funding Agencies (ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, and SER); the National Science Council, Taipei; the Thailand Center of Excellence in Physics, the Institute for the Promotion of Teaching Science and Technology of Thailand and the National Science and Technology Development Agency of Thailand; the Scientific and Technical Research Council of Turkey, and Turkish Atomic Energy Authority; the Science and Technology Facilities Council, UK; the U.S. Department of Energy, and the U.S. National Science Foundation. Individuals have received support from the Marie-Curie program and the European Research Council (European Union); the Leventis Foundation; the A.P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds voor Wetenschappelijk Onderzoek; the Dutch Ministry of Education, Culture and Science; the Ministry of Education and Sport; the Research Promotion Foundation for Polish Science, co-financed from European Regional Development Fund; the Ministry of Education and Youth and Science of Bulgaria; the Bulgarian Ministry of Education, Youth and Science; CERN; the Chinese Academy of Sciences, Ministry of Science and Technology, and National Natural Science Foundation of China; the Colombian Funding Agency (COLCIENCIAS); the Croatian Ministry of Science, Education and Sport; the Research Promotion Foundation, Cyprus; the Ministry of Education and Research, Recurrent financing Contract No. SF0690030s09 and European Regional Development Fund, Estonia; the Academy of Finland, Finnish Ministry of Education and Culture, and Helsinki Institute of Physics; the Institut National de Physique Nucléaire et de Physique des Particules/CNRS, and Commissariat à l’Énergie Atomique et aux Énergies Alternatives/CEA, France; the Bundesministerium für Bildung und Forschung, Deutsche Forschungsgemeinschaft, and Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; the General Secretariat for Research and Technology, Greece; the National Scientific Research Foundation, and National Office for Research and Technology, Hungary; the Department of Atomic Energy and the Department of Science and Technology, India; the Institute for Studies in Theoretical Physics and Mathematics, Iran; the Science Foundation, Ireland; the Istituto Nazionale di Fisica Nucleare, Italy; the Korean Ministry of Education, Science and Technology and the National Natural Science Foundation of China; the Lithuanian Academy of Sciences; the Mexican Funding Agencies (CINVESTAV, CONACYT, SEP, and UASLP-FAI); the Ministry of Science and Innovation, New Zealand; the Pakistan Atomic Energy Commission; the Ministry of Science and Higher Education and the National Science Centre, Poland; the Fundação para a Ciência e a Tecnologia, Portugal; JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); the Ministry of Education and Science of the Russian Federation, the Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, and the Russian Foundation for Basic Research; the Ministry of Science and Technological Development of Serbia; the Secretaría de Estado de Investigación, Desarrollo e Innovación and Programa Consolider-Ingenio 2010, Spain; the Swiss Funding Agencies (ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, and SER); the National Science Council, Taipei; the Thailand Center of Excellence in Physics, the Institute for the Promotion of Teaching Science and Technology of Thailand and the National Science and Technology Development Agency of Thailand; the Scientific and Technical Research Council of Turkey, and Turkish Atomic Energy Authority; the Science and Technology Facilities Council, UK; the U.S. Department of Energy, and the U.S. National Science Foundation. Individuals have received support from the Marie-Curie program and the European Research Council (European Union); the Leventis Foundation; the A.P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds voor Wetenschappelijk Onderzoek; the Dutch Ministry of Education, Culture and Science; the Ministry of Education and Sport; the Research Promotion Foundation for Polish Science, co-financed from European Regional Development Fund; the Ministry of Education and Youth and Science of Bulgaria; the Bulgarian Ministry of Education, Youth and Science; CERN; the Chinese Academy of Sciences, Ministry of Science and Technology, and National Natural Science Foundation of China; the Colombian Funding Agency (COLCIENCIAS); the Croatian Ministry of Science, Education and Sport; the Research Promotion Foundation, Cyprus; the Ministry of Education and Research, Recurrent financing Contract No. SF0690030s09 and European Regional Development Fund, Estonia; the Academy of Finland, Finnish Ministry of Education and Culture, and Helsinki Institute of Physics; the Institut National de Physique Nucléaire et de Physique des Particules/CNRS, and Commissariat à l’Énergie Atomique et aux Énergies Alternatives/CEA, France; the Bundesministerium für Bildung und Forschung, Deutsche Forschungsgemeinschaft, and Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; the General Secretariat for Research and Technology, Greece; the National Scientific Research Foundation, and National Office for Research and Technology, Hungary; the Department of Atomic Energy and the Department of Science and Technology, India; the Institute for Studies in Theoretical Physics and Mathematics, Iran; the Science Foundation, Ireland; the Istituto Nazionale di Fisica Nucleare, Italy; the Korean Ministry of Education, Science and Technology and the National Natural Science Foundation of China; the Lithuanian Academy of Sciences; the Mexican Funding Agencies (CINVESTAV, CONACYT, SEP, and UASLP-FAI); the Ministry of Science and Innovation, New Zealand; the Pakistan Atomic Energy Commission; the Ministry of Science and Higher Education and the National Science Centre, Poland; the Fundação para a Ciência e a Tecnologia, Portugal; JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); the Ministry of Education and Science of the Russian Federation, the Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, and the Russian Foundation for Basic Research; the Ministry of Science and Technological Development of Serbia; the Secretaría de Estado de Investigación, Desarrollo e Innovación and Programa Consolider-Ingenio 2010, Spain; the Swiss Funding Agencies (ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, and SER); the National Science Council, Taipei; the Thailand Center of Excellence in Physics, the Institute for the Promotion of Teaching Science and Technology of Thailand and the National Science and Technology Development Agency of Thailand; the Scientific and Technical Research Council of Turkey, and Turkish Atomic Energy Authority; the Science and Technology Facilities Council, UK; the U.S. Department of Energy, and the U.S. National Science Foundation. Individuals have received support from the Marie-Curie program and the European Research Council (European Union); the Leventis Foundation; the A.P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of Czech Republic; the Council of Science and Industrial Research, India; the Compagnia di San Paolo (Torino); and the HOMING PLUS program of Foundation for Polish Science, co-financed from European Union, Regional Development Fund.

S. Chatrchyan,1 V. Khachatryan,1 A. M. Sirunyan,1 A. Tumasyan,1 W. Adam,2 E. Aguilo,2 T. Bergauer,2 M. Dragicevic,2 J. Erö,2 C. Fabjan,2 M. Friedl,2 R. Frühwirth,2 V. M. Ghete,2 N. Hörmann,2 J. Hrubec,2 M. Jeitler,2 W. Kiesenhofer,2 V. Kniţn,2 M. Krammer,2 I. Krátschmer,2 D. Liko,2 I. Mikulec,2 M. Pernicka,2,a D. Rabady,2,c B. Rahbaran,2 C. Rohringer,2 H. Rohringer,2 R. Schoeffel,2 J. Strauss,2 A. Tauris,2 W. Wulz,2,c V. Mossolov,3 N. Shumeiko,3 J. Suarez Gonzalez,3 M. Bansal,4 S. Bansal,4 T. Cornelis,4 E. De Wolf,4 X. Janssen,4 S. Luyckx,4 L. Mucibello,4 S. Ochesanu,4 B. Roland,4 R. Rougny,4 M. Selvaggi,4 H. Van Haevermaet,4 P. Van Mechelen,4 N. Van Remortel,4 A. Van Spilbeeck,4 F. Blelka,5 S. Blyweert,5 J. D’Hont,5 R. Gonzalez Suarez,5 A. Kalogeropoulos,5 M. Maes,5 A. Olbrechts,5 W. Van Doninck,5 P. Van Mulders,5 G. P. Van Onsem,5 I. Villella,5 B. Clerbaux,6 G. De Lentdecker,6 V. Dero,6 A. P. R. Gay,6 T. Hreus,6 M. Jeitler,2,b W. Kiesenhofer,2 V. Kniţn,2 M. Krammer,2 I. Krátschmer,2 D. Liko,2 I. Mikulec,2 M. Pernicka,2,a

SEARCH FOR SUPERSYMMETRY IN EVENTS WITH...
SEARCH FOR SUPERSYMMETRY IN EVENTS WITH ...

PHYSICAL REVIEW D 87, 072001 (2013)

(CMS Collaboration)

1Yerevan Physics Institute, Yerevan, Armenia
2Institut für Hochenergiephysik der OeAW, Wien, Austria
3National Centre for Particle and High Energy Physics, Minsk, Belarus
4Universiteit Antwerpen, Antwerpen, Belgium
5Vrije Universiteit Brussel, Brussel, Belgium
6Université Libre de Bruxelles, Bruxelles, Belgium
7Ghent University, Ghent, Belgium
8Université Catholique de Louvain, Louvain-la-Neuve, Belgium
9Université de Mons, Mons, Belgium
10Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
11Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
12aUniversidade Estadual Paulista, São Paulo, Brazil
12bUniversidade Federal do ABC, São Paulo, Brazil
13Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
14University of Sofia, Sofia, Bulgaria
15Institute of High Energy Physics, Beijing, China
16State Key Lab. of Nucl. Phys. and Tech., Peking University, Beijing, China
17Universidad de Los Andes, Bogota, Colombia
18Technical University of Split, Split, Croatia
19University of Split, Split, Croatia
20Institute Rudjer Boskovic, Zagreb, Croatia
21University of Cyprus, Nicosia, Cyprus
22Charles University, Prague, Czech Republic
23Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
24National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
25Department of Physics, University of Helsinki, Helsinki, Finland
26Helsinki Institute of Physics, Helsinki, Finland
27Lappeenranta University of Technology, Lappeenranta, Finland
28DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France
29Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
30Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
31Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France
32Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
33Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia
34RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
35RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
SEARCH FOR SUPERSYMMETRY IN EVENTS WITH \ldots

77 Benemerita Universidad Autónoma de Puebla, Puebla, Mexico
78 Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
79 University of Auckland, Auckland, New Zealand
80 University of Canterbury, Christchurch, New Zealand
81 National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
82 National Centre for Nuclear Research, Swierk, Poland
83 Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
84 Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
85 Joint Institute for Nuclear Research, Dubna, Russia
86 Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
87 Institute for Nuclear Research, Moscow, Russia
88 Institute for Theoretical and Experimental Physics, Moscow, Russia
89 Moscow State University, Moscow, Russia
90 P.N. Lebedev Physical Institute, Moscow, Russia
91 State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia
92 University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
93 Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
94 Universidad Autónoma de Madrid, Madrid, Spain
95 Universidad de Oviedo, Oviedo, Spain
96 Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
97 CERN, European Organization for Nuclear Research, Geneva, Switzerland
98 Paul Scherrer Institut, Villigen, Switzerland
99 Institute for Particle Physics, ETH Zurich, Zurich, Switzerland
100 Universität Zürich, Zurich, Switzerland
101 National Central University, Chung-Li, Taiwan
102 National Taiwan University (NTU), Taipei, Taiwan
103 Chulalongkorn University, Bangkok, Thailand
104 Cukurova University, Adana, Turkey
105 Middle East Technical University, Physics Department, Ankara, Turkey
106 Bogazici University, Istanbul, Turkey
107 Istanbul Technical University, Istanbul, Turkey
108 National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
109 University of Bristol, Bristol, United Kingdom
110 Rutherford Appleton Laboratory, Didcot, United Kingdom
111 Imperial College, London, United Kingdom
112 Brunel University, Uxbridge, United Kingdom
113 Baylor University, Waco, Texas, USA
114 The University of Alabama, Tuscaloosa, Alabama, USA
115 Boston University, Boston, Massachusetts, USA
116 Brown University, Providence, Rhode Island, USA
117 University of California, Davis, Davis, California, USA
118 University of California, Los Angeles, California, USA
119 University of California, Riverside, Riverside, California, USA
120 University of California, San Diego, La Jolla, California, USA
121 University of California, Santa Barbara, Santa Barbara, California, USA
122 California Institute of Technology, Pasadena, California, USA
123 Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
124 University of Colorado at Boulder, Boulder, Colorado, USA
125 Cornell University, Ithaca, New York, USA
126 Fairfield University, Fairfield, Connecticut, USA
127 Fermi National Accelerator Laboratory, Batavia, Illinois, USA
128 University of Florida, Gainesville, Florida, USA
129 Florida International University, Miami, Florida, USA
130 Florida State University, Tallahassee, Florida, USA
131 Florida Institute of Technology, Melbourne, Florida, USA
132 University of Illinois at Chicago (UIC), Chicago, Illinois, USA
133 The University of Iowa, Iowa City, Iowa, USA
134 Johns Hopkins University, Baltimore, Maryland, USA
135 The University of Kansas, Lawrence, Kansas, USA
136 Kansas State University, Manhattan, Kansas, USA
137 Lawrence Livermore National Laboratory, Livermore, California, USA
University of Maryland, College Park, Maryland, USA
Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
University of Minnesota, Minneapolis, Minnesota, USA
University of Mississippi, Oxford, Mississippi, USA
University of Nebraska-Lincoln, Lincoln, Nebraska, USA
State University of New York at Buffalo, Buffalo, New York, USA
Northeastern University, Boston, Massachusetts, USA
Northwestern University, Evanston, Illinois, USA
University of Notre Dame, Notre Dame, Indiana, USA
The Ohio State University, Columbus, Ohio, USA
Princeton University, Princeton, New Jersey, USA
University of Puerto Rico, Mayaguez, Puerto Rico
Purdue University, West Lafayette, Indiana, USA
Purdue University Calumet, Hammond, Indiana, USA
Rice University, Houston, Texas, USA
University of Rochester, Rochester, New York, USA
The Rockefeller University, New York, New York, USA
Rutgers, the State University of New Jersey, Piscataway, New Jersey, USA
University of Tennessee, Knoxville, Tennessee, USA
Texas A&M University, College Station, Texas, USA
Texas Tech University, Lubbock, Texas, USA
Vanderbilt University, Nashville, Tennessee, USA
University of Virginia, Charlottesville, Virginia, USA
Wayne State University, Detroit, Michigan, USA
University of Wisconsin, Madison, Wisconsin, USA

aDeceased.
bAlso at Vienna University of Technology, Vienna, Austria.
cAlso at CERN, European Organization for Nuclear Research, Geneva, Switzerland.
dAlso at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia.
eAlso at California Institute of Technology, Pasadena, CA, USA.
fAlso at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France.
gAlso at Suez Canal University, Suez, Egypt.
hAlso at Zewail City of Science and Technology, Zewail, Egypt.
iAlso at Cairo University, Cairo, Egypt.
jAlso at Fayoum University, El-Fayoum, Egypt.
kAlso at Helwan University, Cairo, Egypt.
lAlso at British University in Egypt, Cairo, Egypt.
mNow at Ain Shams University, Cairo, Egypt.
nAlso at National Centre for Nuclear Research, Swierk, Poland.
oAlso at Université de Haute-Alsace, Mulhouse, France.
pAlso at Joint Institute for Nuclear Research, Dubna, Russia.
qAlso at Moscow State University, Moscow, Russia.
rAlso at Brandenburg University of Technology, Cottbus, Germany.
sAlso at The University of Kansas, Lawrence, KS, USA.
tAlso at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.
uAlso at Eötvös Loránd University, Budapest, Hungary.
vAlso at Tata Institute of Fundamental Research - HECR, Mumbai, India.
wNow at King Abdullahiz University, Jeddah, Saudi Arabia.
xAlso at University of Visva-Bharati, Santiniketan, India.
yAlso at Sharif University of Technology, Tehran, Iran.
zAlso at Isfahan University of Technology, Isfahan, Iran.
aaAlso at Shiraz University, Shiraz, Iran.
bbAlso at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran.
cAlso at Facoltà Ingegneria, Università di Roma, Roma, Italy.
ddAlso at Facoltà degli Studi Guglielmo Marconi, Roma, Italy.
eeAlso at Università degli Studi di Siena, Siena, Italy.
ffAlso at University of Bucharest, Faculty of Physics, Bucuresti-Magurele, Romania.