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Unsupervised learning of binary vectors: A Gaussian scenario
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We study a model of unsupervised learning where the real-valued data vectors are isotropically distributed,
except for a single symmetry-breaking binary directide {—1,+ 1}V, onto which the projections have a
Gaussian distribution. We show that a candidate vegtandergoing Gibbs learning in this discrete space,
approaches the perfect maték B exponentially. In addition to the second-order “retarded learning” phase
transition for unbiased distributions, we show that first-order transitions can also occur. Extending the known
result that the center of mass of the Gibbs ensemble has Bayes-optimal performance, we show that taking the
sign of the components of this vect@lipping) leads to the vector with optimal performance in the binary
space. These upper bounds are shown generally not to be saturated with the technique of transforming the
components of a special continuous vector, except in asymptotic limits and in a special linear case. Simulations
are presented which are in excellent agreement with the theoretical results.

PACS numbd(s): 87.10+¢e, 64.60.Cn, 02.56:r

I. INTRODUCTION to the preferential direction.
In this framework, a Gaussian scenario was introduced in
Since the introduction of the Ising spin model, the studyRef. [5] as a kind of minimal model, allowing the calcula-

of models with discrete degrees of freedom has become tions to be much simplified and the spherical case to be
core activity in statistical mechanics. When combined withsolved exactly. In this model, the componentséoperpen-
disorder, such models often have interesting connections tgicular toB are assumed to be independent Gaussian distrib-
problems of computational complexity, to learning theory oryted variables with zero mean and unit variance, Pgh’
to open problems in statistics. Discreteness and disorder in= B'.& \/N):exp(_blzlz)/m, where B'-B/N=0. The

?;Orguﬁ%énmgisr']c C:J':f'%ilgeos%' t?]?sd ee)l(agrﬂ?/siglvarglseenmto;%lii ;r:{jistribution of the componerii=B- &N parallel toB, on
’ purp pap P 'ﬁe other hand, can be chosen at will, and in the Gaussian

model with disorder which can be solved in full detail. The cenario it is comoletelv determined by the m d vari-
model is most naturally presented as an unsupervised learRy pietely y €amn

ing problem, and we briefly review the connection with the@N¢e A
existing literature.

The goal of unsupervised learning is finding structure in b)— N X U 5
high-dimensional data. In one of the simplest parametric & )—Eex 2 (b, @
models introduced in the literatuf&—9], N-dimensional in-
dependently drawn data vectoB={&"}, u=1,... aN,

b2

are uniformly distributed, except for a single symmetry- U(b)= b2— B b, 3
breaking directiorB. If we assume that all the relevant prob- 2(1-A) 1-A

ability distributions are known, the aim of learning is to con-

struct an estimate vectdrof the true directiorB. where N=[ Db exp—U(b)] ! is a normalization constant

Previous studies of this model focused on the case wherand Pb=db exy —b?2]/ /2.
B is constrained to have a constant size, being otherwise In comparison with the spherical case, the binary case
equiprobably sampled from thdl sphere. This so-called presents several extra difficulties, which motivates the study
spherical casés associated with a sphericptior distribu-  of this simple model. The main question to be addressed in
tion Py(B)~4&(B-B—N). The focus of the present paper, this work is given thexN data vectorgalso called patterns
however, is on binaryor Ising vectors. In this case3 is  and the knowledge of the probability distributions, what is
known to have binary components onB;e{—1,+1}, ]  the best estimat& one can construct to approxima®® The

=1,... N. This extra knowledge is taken into account by answer, cast in the framework of Bayesian inference, de-
assigning a binary prior distribution pends on whethed is allowed to have continuous compo-
N nents or, conversely, is required to be a binary vector. We
P,(B)= H E 8(B;—1) +E 8(Bj+1) (1) aIso.address t_he problem of whther these_ upper bounds can
=112 2 be simply attained, by first obtaining a continuous vector via
minimization of a potential and then transforming its com-
ponents.
*Electronic address: mauro@hypatia.ucsd.edu The results of the replica calculation for this problem are
TElectronic address: christian.vandenbroeck@Iuc.ac.be briefly reviewed in Sec. Il. Section Ill discusses the special
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case of Gibbs learning, for which simulations have been per- lll. GIBBS LEARNING

formed. In Sec. IV we review the reasoning leading to the Gibbs learning arises as a particular but very important
Bayesian bound in the continuous as well as the binary 9 P y 1mp

space, with simulations compared to the theoretical results 2>¢ 1N this general framework. In order to define it properly,
Ve first recall the Bayes inversion formula

A simple strategy which attempts to saturate these upper

bounds is studied in Sec. V, while our conclusions are pre- P(D|B)Py(B)
sented in Sec. VI. p(B|D)= P(D)b (7)
[l. UNSUPERVISED LEARNING The posterior distributiop(B|D) expresses the knowledge

In order to obtai d didat truct aboutB which is gained after the presentation of the data.
h order to obtain a good candidate veclowe consruc ReplacingB with J in this formula gives the probability

a cost function of the formH= EaNV()‘ ), where x, density that] is the “true” direction B, given the data vec-

=J-&/\N. In the Gaussian scenario, tpetenual Vhas a tors. Note that the binary prior in EG7) constrains the ac-

quadratic form ceptable candidatebto the corners of th&l hypercube, i.e.,
Je{—1,+1}N. Making use of Eq(2), one rewrites

c
V()\)zz)\z—d)\. (4) P
PID)=Py(D T exp-U(3-&/N), ®)
y23
Learning is defined as sampligfrom the Boltzmann dis-
tribution with temperaturd = 1/8 apart from a normalization constant. Gibbs learning is de-
fined as sampling from distributiof8).
aN A comparison with Eq(5) shows that the thermodynam-
P(J|D)= P )exp—,BE V(L) (5) ics of such a process is obtained by settjgig=U [3.,4].
m : Upon substitution of =1, c=A/(1—A) and d=B/(1

—A) in Eq. (6), one finds that the extremum of the corre-
where Z(D) = fdJ P(J)exp—BH is the normalization con- sponding free-energy is reached fj=Rs and gg=Rg,
stant and the measuR{J) is used to enforce either a binary where the subscrigb will hereafter be used to denote results
[P(J)=Py(J)] or a spherical P(J)=P4(J)] constraint on from Gibbs learning. The equalities reflect the symmetric
J. While the spherical case has been dealt with in R&f.  role played byJ andB in Gibbs learning, a property which
we focus now on the case where the candidate vectors haves been previously noted in several publicati(see, e.g.,
binary components. The thermodynamic properties of such Refs.[10] and[11], among othens The four original saddle
system can be read from the free enefgy— (1/8N)InZ. In  point equations are then effectively reduced to a single one
the thermodynamic limiN—o, f becomes self-averaging,

(f(D))p="f, and can be calculated via the replica trick. This Re=F3(F(\VRg)), 9

by now standard calculation will not be reproduced here,

only the results are quoted: for a replica symmetric ansati"’here
the quadratic forms of the Gaussian scenario allow the cal-
culations to be performed exactly, and the free energy reads Fa(X)= \/J' Dz tanH zx+ x2) (10)

f= EXxtry ra.R

(1- Q)q RR 1J’ is a function coming from the entropic term of the free en-
T ———| DzIn coshz\/—+ R) ergy, while

B2+ ARg(A—B?)

In[1+cB(1-q)] 2 -
ﬂ PR =a| =~ ama (1)
2 2 2
c c[q—R“(A-B?%)]-2BRd-d B(l—q)” . (¢ Thesolution of Eq(9) also determines the value of the con-
2[1+cp(1-q)] jugate parameteRg :

The above order parameters are also self-averaging quanti- Re=F2(VRg). (12
ties and can be interpreted as follovig=B-J/N measures
the alignment between a typicébinary) sample of Eq.(5) In order to check that the replica symmetansatzis

and the preferential direction, its absolute value as a functiogorrect, we also study the entropw=B82(d/dB)[f
of a being hereafter used to account for the performance of- (In 2)/8], which for Gibbs learning reads
a given potentiaV; q=J-J'/N is the mutual overlap be-

tween two different samples of E€5), while R andq are the (2 RG &
associated conjugate parameters. The equilibrium values of SeT Dzin2 costizyR +RG)
the four variables are determined by the solution of the

saddle point equations which arise from the extremum op- @

erator in Eq.(6). 5 +(B?~A)(1-Rg)|. (13

1-ARg
In(
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On physical grounds, this quantity should always remain 1
positive. Additionally, by relatingsg with the mutual infor-
mationi per degree of freedom between the datand the 08 F

preferential directiorB, Herschkowitz and NaddR] show
that it cannot decrease faster than linearly withFor the
Gaussian scenario, the inequality reags=In 2—(«/2)[ B?
—A-In(1-A)]. Before we proceed to study in detail the
solution of Eq.(9), we turn to the analysis of the asymptotic 04
behavior of the system.

06 F i\

Rg
SG

02
A. Asymptotics

The asymptotics of the solution of E(R) can be imme- 0
diately inferred by carrying out expansionsf and F. In
the vicinity of Rg=0, if we assume a smooth behavior for
Rg(«), the predictions for the Gaussian scenario are

FIG. 1. OverlapR; (left axi9) as a function ofr’ for A=0 [see
B#OzRG:aBz, (14) Eq. (18)]: theory (solid line and simulations Witm=100 (sym-
bols; error bars represent one standard deviation, see text for de-
-0 a<a tails). The dashed line represents the entréght axis while the
B=0=Rg ' G (15) dotted line shows the linear bouridght axis.
=Cgla—ag), a=ag,

=0, while A=0 eliminates the dependenceRy{ on Rg [see

h R )
where Egs.(11) and(12)], much simplifying the saddle point equa-
1 tions, which can be solved exactly. The behaviorRyf is
ag=—, seen to be simply determined by the rescaled variable
A
(16) a'=aB?, (18)
AZ
Ce=1"A namely,Rg=F3(y/a'). This function can be seen in Fig. 1.

It shows a linear increase for smaill and an exponential

We see that in the so-called biased c&s#0, it is much  behavior fora’—c0. The entropy saturates its linear bound
easier to learn. The unbiased c&se 0 presents much more only in the limit «’—0, approaching zero exponentially
difficulties for information about vectoB to be extracted, whena’'—c but remaining otherwise strictly positive.
due to the intrinsic symmetri3— — B. In this case, retarded Note thatA=0 means thab has unit variance. The pat-
learning occurg2,3], meaning that a nonzero macroscopicterns can thus be pictured as being distributed in an
overlapRg will be obtained only after a critical number of N-dimensional spherically symmetric cloud, whose displace-
examplesagN is presented. For<ag, the entropy satu- mentB from the origin conveys the information abadBt
rates its linear bound exact(®]. This second order phase  Simulations.Binary disordered systems are known to be
transition is identical to the one obtained in the sphericavery hard to simulate due to the existence of very many local
cas€5,6], revealing that the binary nature of the preferentialminima. A noisy dynamics with unity temperature and gen-
direction plays no role in the poor performance regime. eral cost functionJ will typically get stuck in one of these

In the limit «— ¢, on the other hand, the differences with minima, preventing a proper sampling of the posterior distri-
respect to the spherical case become pronounBgdap-  bution(8) in an acceptable time. The Gaussian scenario with
proaches 1 exponentially, A=0 provides an exception to this rule, allowing Gibbs
learning to be very easily implemented with a simple Me-

a—w m(1—A) y tropolis algorithm[13]. SinceA=0 implies a linear function
1-Rg = 5 -e (BT AT U()), the changes in energy can be very quickly calculated
2a(B5(1-A)+A%) because it depends only dnX &
17) Figure 1 shows the results for simulations wikh=100

as opposed to the power law observed for the spherical casé® Smallest system size simulateahd two values oB,
Equation(17) also implies an exponential decay to the en-Cchecking the relevance of the variakle. For each pattern
tropy se=a(1— Ra)[BX(1—A) + A2]/[2(1—A)]. setD, te_n__sa_mpl_es oRg and qg were measur_ed, after a
These qualitative asymptotic results can be shown to hol§@ndom initialization of the system and a warming up of the
for general distributiong(b) [12]. In the following, we ex- dynamics(see further details belowThe whole procedure
plore the Gaussian scenario in more detail, studying the be¥as repeated for 1000 pattern sets and the standard deviation

havior of Rg(@) away from the asymptotic regimes. was calculated over these 10000 samples.
The measurement @f; during simulations is another tool

to check both the property;= Rg and the correctness of the

RS ansatz. Figure 2 focus on the second simulated point of
The first case to be addressedAs-0 with B#0. The Fig. 1 (e’'=1). It shows histograms for botR; and g¢

nonzero bias makes sure learning starts off as soor as (measured between pairs of consecutive sampibich are

B. The biased case
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FIG. 3. Rg (thick lines, left axi$ andsg (thin lines, right axi$
FIG. 2. Gaussian scenario with=0, B=1, anda=1. Histo- as functions ofa for A=+0.6 andB=0. The thin dotted lines

grams ofqg (thick lines andRg (thin lines for N=100 (dashedd ~ correspond to the linear bound, which is exactly saturated up to the
and N= 1000 (solid); the vertical line is the theoretical prediction. second order phase transition. A small bigs 0.1 (with A=0.6)
The upper inset shows theeTRoPOLIS Rg dynamics for two pat-  breaks the symmetry and destroys the second order phase transition
tern setgsame legend, see text for dethilShe lower inset presents (thick dotted line, left axis, entropy not shoyn
the variance of the distribution fdRg (symbolg as a function of
1/N for N=100,500,750, and 1000; the dotted line is a linear fit of

the three leftmost points. =0.1 in an otherwise symmetric distribution: for sufficiently

largea (say,a> ag), the effect is negligible, but for smadl

virtually indistinguishable on the scale of the figure, with agi]gogmke” symmetry destroys the second order phase tran-

mean value in excellent agreement with the theoretical prez D . -
It is interesting to note in Fig. 3 that even though the

diction. The upper inset gives a glimpse of iETROPOLIS = . "
dynamics: the system is initialized randomly @0 and Phase transition foA=—0.6 andA=0.6 occurs at the same
critical value, the overlap increases much slower in the

evolves up tda =50 Monte Carlo steps per sitMCS/site, at . ) N
P ps per sit 0 ormer case than in the latter. Recalling the definitionAof

which moment a different pattern set is drawn. The syste . . o
reaches thermal equilibrium afte(10) MCS/site, which Egs.(2),(3)], this means that prolate Gaussian distributions
’ (N-dimensional “cigars”[2]) convey less information about

motivated the choice of safely waiting 100 MCS/site during

the simulations before any measurement was made. The s;%“—e _preferential  direction than oblate distributions
tem was reinitialized after every measurement of the overt\-dimensional “pancakes(2]) for the same absolute value

laps. Note that some pattern sets yield time-averaged valu ' . P
of Rg which deviate from theorynotably the first one for However, the secqnd order phase tranS|t|op(gaft:A IS

N =100 and the second one fiir=1000) and only a second not the only interesting phenomenon'for this mogjel. First
average over the pattern sets gives the right results. ThiZ'der phase transitions are also possible, depending on the
reflects the property of self-averaging, which only holds invalue QfA' They can occur in tWO, situations: elth.e'r for

the thermodynamic limi{note that deviations from theory ~ %c. N which case two consecutive phase transitions take
are smaller for largeN). The lower inset shows the typical Place during learninga second-order one followed by a

- ; ; it first-order ong¢ or a<a, in which case the asymptotic re-
scaling with 14/N of the width of the distribution of over- ; G . .
laps 9 sult Eq. (15) is overridden. The first-order phase transition

appears when there is more than one solution to the saddle
point equation. In such cases the solution with minimal free
energy has maximal probability of occurrence, being thus the
When B=0, retarded learning is expected to occur, ac-thermodynamically stable state. Such first-order phase tran-
cording to Eq.(15). Figure 3 shows the solution of tfe;  sitions have been found for the spherical case with a two-
saddle point equation for two values Af namely, 0.6 and  peaked distributiorf7], but not with the Gaussian scenario
—0.6. In both cases, a second-order phase transition occulS], which shows that they are due to the discrete nature of
at the critical valuexg predicted by Eq(16) and the entropy the search space in this case.
saturates exactly the linear bound before the phase transition. An overview of this phenomenology is presented in Fig.
Based on the relation betweesy andi [9], the retarded 4. It shows the three typical behaviors that occurBet 0.
learning phase transition can be interpreted as follows: foFor comparison, the cage=0.6 plotted in Fig. 3 is shown
a<ag, the system extracts maximal information from eachagain, as an example of a parameter region where there is
pattern but is nonetheless unable to obtain a nonzero aligenly a second order phase transiti@t ag=2.78). ForA
ment Rg with the preferential directio8. Only at a=ag =0.78 the second-order phase transitioa@t1.643 is fol-
doesRg depart from zero, which on its turn immediately lowed by a first-order phase transitioncﬁ@)=1.704(upper
gives an increasing degree of redundafmyeasured by the inset, lower axig while for A=0.85 only a first-order phase
deviation ofsg from its linear boungito the patterns coming transition takes place aw=1.27, overriding the second-
thereafter. Figure 3 also shows the effect of a small Bias order phase transition at=1.38 (lower insej which was

C. The unbiased case
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bestperformanceR one could possibly attain with a vector
J? Watkin and Nada]l3] answered this question in a Baye-
sian framework by definingptimal learning(see also Refs.
[14,15). We briefly review their reasoning here and extend it
to take into account the binary nature of the vectors.

We define the quality measur@(B,J)=B-J/N, which
quantifies how welB is approximated by any candidate vec-
o1 tor J satisfyingJ- J=N. SinceB is unknown,Q is formally
S inaccessible. But one can take its average with respect to the
0 posterior  distribution (7), leading to Q(J,D)
=[dB Q(B,J)p(B|D). 0 is then a formally accessiblmna
fide quantity which can be used to measure the performance
of J.

Optimal learning isdefinedas constructing a vectalg

FIG. 4. SolutionsRg of the saddle point Eq$9) and(11) asa  \yhich maximizesQ. The linearity of @ in J immediately
function of @ for B=0 and three values oA. s¢ is plotted with implies
dashed lines and the thermodynamically stable solutions are plotted

with thick lines.A=0.78 (upper inset R (left axis) vs a (bottom

0.069

Sg

0.066

Rg

axis) andsg (right axi9 vs « (top axis—note the different scale,
which zooms in the first-order phase transijioA=0.85 (lower
inse): Rg (left axis) andsg (right axi9 vs a.

@(J,D)zN*lJ-deBp(Bm), (19

leading on its turn to

predicted on asymptotics and smoothness grounds. Note that
none of these first-order phase transitions can be predicted by J :if

the asymptotic expansion, E(L5). It is also interesting to ® JRe

observe that some solutions of the saddle point equation may

violate the linear bound and/or the positivity of the entropywhere theyRg factor guarantees the proper normalization of
(notablyA=0.85 in Fig. 4. However, it turns out that these Jg. This is the so-called Bayesian vector, which is the center
branches are always thermodynamically unstable, while thef mass of the Gibbs ensemble. In the thermodynamic limit,

dBBp(B|D), (20)

stable solutions satisfy all the requirements.
The whole phase diagram f&=0 is shown in Fig. 5.

its performanceRg=B-Jg /N is shown to be simply related
to that of Gibbs learning15,3: Rg= \Rg.

For A>A,=0.773, a first-order phase transition takes place

at the Iineag’(A), after the second-order one has already

occurred. For increasing, ag)(A) gets closer and closer to
ag(A), until there is finally a collapse #&=A,=0.808. For

larger values ofA, only the first-order phase transition oc-

curs.
IV. OPTIMAL LEARNING: THE BAYESIAN
PERSPECTIVE

We now switch to the following question: given tle\
data vectors and the prior information ab@&jtwhat is the

3

—F T
25
9L
3 15
1k
0.5 AL A
A I
06 065 07 075 08 08 09 095 1
A

FIG. 5. Phase diagram for the unbiased caBe-(Q). Second
order phase transitions occur at=ag=A"? (solid ling), while
first order phase transitions take placevat a(Gf) (dashed ling See
text for details.

A. The best binary

Up to now the reasoning is fairly general. The whole pro-
cedure can actually be carried out without explicitly men-
tioning what the prior distributio®(B) is. For clarity, in the
following Jg will specifically denote the Bayesian vector for
a binary prior. Note, however, that despite being the center
of mass of the ensemble bfnary vectors sampled from the
posterior distributionJg has real-valued componerjt?], in
general.

One would therefore like to address the next question:
what is thebest binaryvector one can construct? In other
words, what is the binary vector—inferable from the data—
that outperforms—on average—any other binary vector in
approximatingB? The answer is again straightforwdib]:
the vectord,, which maximizesQ among the binary vectors
is simply obtained by the clipping prescription, namely
[Joblj=san(Jglj), j=1,... N or, in shorthand notation,

Job= Peiip(JIp) -

This can be easily checked by noting that the quantity to be
maximized[the right-hand side of Eq19)] is proportional
to EJN: 1Jj[Jglj - In what follows,Jyy, is called the best binary
vector. Summarizing, iB is known to be binaryJg is the
best estimator one can provide. But if the estimator is re-
quired to be binary as well, thely, is the optimal choice.
The proof thatlg andJ,, are optimal estimators in their
respective spaces, is relatively simpk. What we show

below is that maximal implies maximal alignmenR with

(21)
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B, in the thermodynamic limit. For the best binary, one de- A Rg =001
parts from the inequalityQ(J,,)— 9(J)=0, VJe{-1, st T ﬁg:ﬁ:;
+ 11N and takes the average with respect to the data distri- 5| - gafg‘s‘
bution T ¢m"
2.5
3
f dD P(D)[Q(Jbb)_Q(J)]:I dB Pb(B)f dD P(D[B) e 2
L5t
B-Jyp, B-J =0, (9 L
I
05
If we now assume thadR,,=B-J,,/N andR=B-J,,/N are 0
self-averaging, the average over the data can be by-passe -
and one obtains y
N— FIG. 6. Probability distribution of=B1(J,), for different val-
dB P,(B)[R,,—R] = 0. (23) uesofRg.

The above expression can be evaluated again with the use of

Finally, one notices tha®,(B) is a uniform prior, making no the replica trick. The replica symmetric result is

distinction between any particular binary vectthis is re-
flected, for instance, in the free energy 6 being independent

of the particular choice dB): this allows the last average in <([JB]1)m>D:;J Dz {tanr[z«/ﬁe(a)
Eq. (23) to be by-passed as well, leading to the stronger [Ro(a)]™?
upper boundRp,=R. R .
+Rg(@)B,]} (26)
B. Performance and simulations or, equivalently,
The performanceR,;, of the best binary vector can be
explicitly calculated by extending previously obtained results _ 1 =" .
for the clipping prescriptiorf17,18. In Ref.[18], Schietse <Xm>D_[RG(a)]m/2 Dz{tanfzVRg(a)+Rg(a)]}™,
et al. study the effect of a general transformati&]] (27

=\/N¢(Jj)/\/2i¢2(Ji) on the components of a properly .

normalized continuous vectdrsatisfyingB-J/N=R. If Bis  where the values dR¢(a) andRg(«) should be taken at the
binary, ¢ is odd andR=B-J/N is self-averaging, then the solution of the saddle point Eq&) and(12) for Gibbs learn-
following relation follows: ing. Notice that the passage from Eg6) to Eq.(27) is valid
only if B is binary. From Eq(27) one immediately rewrites
the probability distributiorP ,,(x), by identifying a change
of stochastic variablesc=Rg 2tanh¢VRs+Rg), with z
normally distributed:

_ f P(x) ¢(x) dx
R= 29 (24

U P(x) $*(x) dx

b ()= VR
where the variabla=B,J; is expected to be distributed in- cmit T —— 1— R-x2
dependently of the index, because of the permutation sym- 27Rg( ox°)
metry among the axes. —1[1 [1+Rex| . 2
We are left then with the problem of calculatiri®(x), X exp— Eln -Rg (28
after which Eq.(24) can be applied fogp(x) =sgn(x), pro- 2R 1- JRex

viding Ry, as a function oRg . If J is uniformly distributed ) « )
on the coneB-J=NR, then P(x) is just a Gaussian with Note that sinceRg and Rg are simply related to each other

meanR and variance + R? [18]. However, this can hardly [Eds.(9) and(12)], Pcm(x) can always be parametrized in
be expected to hold for the Bayesian vector, since it is a surfinction of Rg only. In Fig. 6, the probability distribution of
of Ising vectors. One would naively expeky to be closer to  Y=X\Rg is plotted for different values oRs, illustrating
the corners of théN-hypercube instead. To obtain the rel- the fact thagy|<1.

evant P, (X)=P(x=B;[Jg];), we calculate themth Equation(28) should be compared to the Gaussian distri-
quenched moment ¢g], bution obtained in Ref18]. It shows thatlg is indeed closer
to the corners of thél hypercube, optimally incorporating
([3]D™p the information thaB is binary.
N " We have run simulations fok=0 andB=1 as described
B Z‘m( 43P ORI )) in Sec. Il B. For a system sizd=500, the center of mass
_@/2 b(J) J.& m a . was constructed witm=50 samplers, being normalized af-

terwards. Each component BfandJg was used to measure
(25) X, the procedure being repeated 100 times for each of the 100
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FIG. 7. Gaussian scenario with=0 andB= 1. Probability dis- Rg
tribution of x=B;[Jg]; for «=0.25, «=0.6 (left plot), and «
=1.17 (right plot) or, correspondinglyRz=0.2, Rz=0.4 andRg FIG. 8. Ry, Rg, andI': comparison between simulations and
=0.6. Solid line: simulations. Dashed line: thedBqg. (28)]. theory, for different values of. Error bars represent one standard

deviation. The diagonal is plotted for comparison.
pattern sets. A comparison between the resulting histogram
and the theoretical prediction can be seen in Fig. 7. The good The curveRR,;,, Rg, andI” as functions oRg are plotted
agreement shows that E@8) correctly describes the statis- on Fig. 8, together with results for simulations with the same
tical properties of the Bayesian vector. parameters as those of Fig. 7. The data is in excellent agree-
We can finally proceed to calculate the performaRgg  ment with the theoretical results, errors generally remaining
of the best binary vector. Making use of E¢24) and (28), below the margin of one standard deviation. Note that
we make a change of variables to obtain = /2/7, with equality holding only foRg— 0. This result is
another confirmatio;/ithe picture thay lies closer to the
_ . [& binary vectors, since2/7 is the overlap between a continu-
Rob™= f Pem(X) sgrx) dx=1-2H[VRs(a)], (29 ous vector isotropically sampled from thehypersphere and
its clipped counterpart. Figure 9 zooms in the fourth column
whereH(x)=[{Dz. Making use of the relation betwe®s  of points of Fig. 8 ¢=1.17), showing the histograms of the
andRg, we finally write overlaps. One observes that the distributionlois much
sharper than the other ones, while the statisticRgfis
Ryp=1-2H[Fg(Rg)]=1-2H[F;'(VRg)] (30)  better because it has=50 times more samples.

:1—2H[f(RB)]:1—2H(\/§—G), (32) V. TRANSFORMING THE COMPONENTS
whereFg1! is the inverse ofF g. A. General resits
Equation(30) expresses an upper bound for binary candi- Since sampling the binary Gibbsian vectors is usually a
date vectors) in approximatingB, satisfying two obvious Vvery difficult task, the construction of the Bayesian vector
inequalitiesR;<R,,<Rg. The asymptotic behavior d¢,,  according to the center of mass recipe is not always possible,
can always be written in terms &g : in the poor perfor- in practice. Alternative methods should therefore be devel-
mance regime Rg—0), one recovers previous results for oped for approximating th&g and Ry, performances. One
clipping a spherical vectdr8,19, R,,=+2Rg/, while in
the largea regime Rg—0) a faster exponential decay is
achieved than with Gibbs learning=1R,,=(2/7)(1—-Rg)
[12]. 60 1
As a spin-off of the calculation, we have also obtained the
overlap between the Bayesian vector and its clipped counter-
part, [=Jg-Jop/N=N""2}|[Jg];|. This quantity can be 40 |
easily computed:

Rg  RyRp r
70 T

50

P(R)

30

Rbb 20

inj Dz|tanjzVRg(a)+Rg(a)]|==-, (32
Rs R

AN
if one notices the counterintuitive identityDz [tanhga 0 : : St J

+a?)|=[Dzsgniza+a?), Va, which is proved in the Ap- 0 02 04 06 08 !
pendix. The simple resulf =R,,/Rg immediately implies R

the equality 0p,—1'Jg) - (Jg— RgB) =0, for which we still FIG. 9. Histograms of the overlagRg, Rg, Ry, andI" for
have not found a deeper interpretation. a=1.17. The vertical lines show the theoretical predictions.
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such method is the technique of transforming the compo- 1

nents of a previously obtainesphericalvector, as described

in Sec. IV B. In the following, we first derive general results 08 -

(for any functionU) and subsequently look at the Gaussian

scenario in detail. 06
A natural choice for the vector to be transformedgs;, .

which can be obtained by minimizing—in theN 04

hypersphere—an optimally constructed cost func{ibr8| ’

H== Mvgpt(x x)- It attains the Bayes-optimal performance .

RSpi=B-J5,/N for the spherical case, which satisfies '

RSu= Fo(F(RS,), (33) ot

0 5 10 15 20 25 30 35 40 45 50
whereF (x)=x/y/1+x%. Note that‘]zlot saturates the perfor- o

mance of the center of mass of the Gibbs ensenfnea
spherical prior Equation(33) should be compared to the
performance oflg, which obeys

FIG. 10. Overlaps as functions af for two choices of param-
eters in the Gaussian scenarfo=1/3 with B=0.1 (upper curves
and A=—1/3 with B=0 (lower curve$. The upper boundfg
(solid) and Ry, (dashed are depicted with thick lines, while the

Rg=F5((Rg)). (34 approximationsR;, (solid) and R, (dashedl are plotted with thin

While RS~ Rg for small a, the differences betweel; and lines.

Jopt are clearly manifested in the asymptotic behavior for _ '
large a, with RS, approaching unity with a power lais,6] Another available measure of the success of the optimal
instead of the (zapxponential decay of H47). transformationg* in rendering a good approximation for

We would like to depart frondS, and obtain approxima- 8. 1S the  probability distribution P(x,), where x,
tions to bothJ,, andJg . The first one is obtained by clip- = %" (X)/R; . In order to obtairP(x,), one just has to recall
ping, J5i,=Peip(J5p)- The second one relies on an optimal that SPOZ() is Gaussian with mearR,, and variance 1
transformation  [18] * (X)=[P(x)—P(—x)]/[P(X) —(Rop)“-  The optimal transformation is thenx,
+P(—x)], which maximizes the transformed overfahe = ¢* (X)/R; =tanHR3,x/[1—(R3;)*I}H/R; , and can be re-
vector obtained by such a transformation 33, is denoted garded as an attempt to attach some structure to the distribu-
by JS, thus [Ji]j:¢*([33pt]j)/Ri . j=1,... N, where tion of the transformed, . With a simple change of vari-

* !

RS=B.J%/N ables,P(x, ) is readily seen to be
* * *
SinceJg,,; contains no information about the binary nature
of B, the results of Schietset al. can be directly applied to s 55 2
renderR;,=B- Jg;,/N andR; . In this caseP(x) is Gauss- P(x,)= Ry V1~ (Rop
ian and one obtaingl 8] V2TRE [ 1 (RS X, )?]
gip= 1= 2H(F(R3)) (35 —[1- (R3] 1 [ 1+REx,
X ex — Eln S
RS =Fa(F(RE) (36 2(Rop R
(Rew? |”
We would like to compare Eq$30) and (34) with Egs. B L (39)
(35 and (36), respectively. Despite their resemblance in 1—(Rf)pt)2

form, one notices that the former should be solved, while the

latter just map the solution of E¢33). In order to compare

the equations, one should first note tigi(x)=F4(x), Yx A comparison with Eq(28) shows that the two equations are
=0. SincedFIR=0, in generaIRB>R§pt. This result in  very similar, but not identical. Some similarity in shape

turn immediately implies the inequalities should indeed be expected, mainly becaB¢g, ), just like
Pcm(X), must be such that[P(xX)—P(—=Xx)]/[P(X)+P
Ri,ips Rop (37) (—x)]ex, in order to consistently prevent any further im-
provement by a similar transformation. One can verify in
R; <Rg, (39 Fig. 11 that the resemblance between the probability distri-

butions is closely associated with the succesBpfin satu-
with equality holding for both equations in the asymptotic rating the upper boun®g. The curves correspond to the
limits a— % andRg— 0. This general behavior is confirmed Gaussian scenario with=1/3 andB=0.1 for two values of
in Fig. 10, which shows the results for the Gaussian scenarig (one can thus refer to the upper solid curves of Fig. 10
in the two relevant cases: zero and nonzero bias. Note that fora=8, the difference betweeRg and RS is
very small in Fig. 10, which is reflected in the solid curves of
Fig. 11 being very close to each other. Accordingly, the
'Consistently, the optimal transformation fB(x)=P.,(x) be-  dashed curves in Fig. 11 get further apart éo+ 10 as the
comesg* (x)x=x, that is, no improvement is possible. mismatch between the overlaps increase in Fig. 10.
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12 * 2210 : * : * Gibbs learning presents not only an exponential asymptotic
=§ —— decay and second-order “retarded learning” phase transi-
I i tions, but also first-order phase transitions for a simple

Gaussian scenario.

On the question of what is the optimal estimator, given
the data and the knowledge that the preferential direction is
binary, we have shown that the answer depends on which
space the estimatak is allowed to lie in. The best continu-
ous estimator is the Bayesian vector, which is the center of
mass of binary Gibbsian vectors. The best binary vector is
obtained by clipping the Bayesian vector. We have calcu-
lated its properties in detail, providing an upper bound to the
performance of binary vectors.

X, X Finally, we have also studied one possible way of con-
structing approximations to these two optimal estimators. By
transforming the components of a previously obtained con-
tinuous vector, we show that the upper bounds cannot be
saturated, in general. Exceptions to this rule are the
asymptotic limits(both Rg—0 and a—«) and the special
B. The biased case case of a linear functiol. Interestingly, the linear case also

. . . _ seems to be the only one in which Gibbs sampling can be
_ The simple biased case with=0 andB+0 prowdess an - performed without cgmputational difficulties. W(f ar?a there-
interesting exception to the per.formancesJQf and Jjip-  fore left with a situation where the approximations work per-
The fact thatU(b) is linear impliesdF/dR=0, as can be fectly only in the case where they are actually not needed.
readily verified in Eq(11). This, on the other hand, implies \ye helieve this kind of result reinforces the need of investi-
the equalities in Eq437) and(38), that is, gating the connection between results in statistical mechanics

Rilip: Ryp, (40) and computational complexity theory.

FIG. 11. DistributionsP_ ,(x) (thick) andP(x,) (thin) accord-
ing to Eqs.(28) and(39), respectively. The values=8 (solid) and
a=10 (dashed refer to the Gaussian scenario with=1/3 andB
=0.1(see Fig. 1D
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this case. The second equality, however, seems to us more
remarkable, because it establishes a result which we could APPENDIX
not find elsewhere in the literature: the optimal transforma-
tion manages to completely incorporate the information In order to show that E(32) is correct, one just has to
about the binary nature d&, leading to the Bayes-optimal Show that the integral below vanishes identicalfi:
performanceRg without the need of explicitly constructing
the center of mass of the Gibbs ensemble. In other words, the j Dz[sgnaz+a?)—|tanhaz+a?)|]
technique of non-linearly transforming the components of

the vectors, introduced in Refl7] and extended in Ref.
[18], is able to give a definitive answer to the problem it aims = f Dzsgnaz+a®)[1—tanhaz+a?)]
to solve.
z=y7af dy (y—a)22
VI. CONCLUSIONS = —e YV sgna 1—-tanha
2n gray) [ hay)]

We have presented results on learning a binary preferen-

. . . . .. R —ay
tial direction from disordered data. Constraining the candi- —a?p J' a
- . = D Y———|=0. (Al
date vectors to the binary space as well, we first showed that € ysgriay) e coshay) 0. (AD
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