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Unsupervised learning of binary vectors: A Gaussian scenario
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We study a model of unsupervised learning where the real-valued data vectors are isotropically distributed,
except for a single symmetry-breaking binary directionBP$21,11%N, onto which the projections have a
Gaussian distribution. We show that a candidate vectorJ undergoing Gibbs learning in this discrete space,
approaches the perfect matchJ5B exponentially. In addition to the second-order ‘‘retarded learning’’ phase
transition for unbiased distributions, we show that first-order transitions can also occur. Extending the known
result that the center of mass of the Gibbs ensemble has Bayes-optimal performance, we show that taking the
sign of the components of this vector~clipping! leads to the vector with optimal performance in the binary
space. These upper bounds are shown generally not to be saturated with the technique of transforming the
components of a special continuous vector, except in asymptotic limits and in a special linear case. Simulations
are presented which are in excellent agreement with the theoretical results.

PACS number~s!: 87.10.1e, 64.60.Cn, 02.50.2r
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I. INTRODUCTION

Since the introduction of the Ising spin model, the stu
of models with discrete degrees of freedom has becom
core activity in statistical mechanics. When combined w
disorder, such models often have interesting connection
problems of computational complexity, to learning theory
to open problems in statistics. Discreteness and disorde
troduce intrinsic difficulties, and exactly solvable models a
rare. The main purpose of this paper is to present a disc
model with disorder which can be solved in full detail. Th
model is most naturally presented as an unsupervised le
ing problem, and we briefly review the connection with t
existing literature.

The goal of unsupervised learning is finding structure
high-dimensional data. In one of the simplest parame
models introduced in the literature@1–9#, N-dimensional in-
dependently drawn data vectorsD5$jm%, m51, . . . ,aN,
are uniformly distributed, except for a single symmetr
breaking directionB. If we assume that all the relevant pro
ability distributions are known, the aim of learning is to co
struct an estimate vectorJ of the true directionB.

Previous studies of this model focused on the case wh
B is constrained to have a constant size, being otherw
equiprobably sampled from theN sphere. This so-called
spherical caseis associated with a sphericalprior distribu-
tion Ps(B);d(B•B2N). The focus of the present pape
however, is on binary~or Ising! vectors. In this case,B is
known to have binary components only,BjP$21,11%, j
51, . . . ,N. This extra knowledge is taken into account
assigning a binary prior distribution

Pb~B!5)
j 51

N F1

2
d~Bj21!1

1

2
d~Bj11!G ~1!
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to the preferential direction.
In this framework, a Gaussian scenario was introduced

Ref. @5# as a kind of minimal model, allowing the calcula
tions to be much simplified and the spherical case to
solved exactly. In this model, the components ofj perpen-
dicular toB are assumed to be independent Gaussian dis
uted variables with zero mean and unit variance, i.e.,P(b8
[B8•j/AN)5exp(2b82/2)/A2p, where B8•B/N50. The
distribution of the componentb[B•j/AN parallel toB, on
the other hand, can be chosen at will, and in the Gaus
scenario it is completely determined by the meanB and vari-
ance 12A:

P~b!5
N

A2p
expH 2

b2

2
2U~b!J , ~2!

U~b!5
A

2~12A!
b22

B

12A
b, ~3!

where N5@*Db exp2U(b)#21 is a normalization constan
andDb[db exp@2b2/2#/A2p.

In comparison with the spherical case, the binary c
presents several extra difficulties, which motivates the st
of this simple model. The main question to be addresse
this work is given theaN data vectors~also called patterns!
and the knowledge of the probability distributions, what
the best estimateJ one can construct to approximateB? The
answer, cast in the framework of Bayesian inference,
pends on whetherJ is allowed to have continuous compo
nents or, conversely, is required to be a binary vector.
also address the problem of whether these upper bounds
be simply attained, by first obtaining a continuous vector
minimization of a potential and then transforming its com
ponents.

The results of the replica calculation for this problem a
briefly reviewed in Sec. II. Section III discusses the spec
6971 ©2000 The American Physical Society
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case of Gibbs learning, for which simulations have been p
formed. In Sec. IV we review the reasoning leading to
Bayesian bound in the continuous as well as the bin
space, with simulations compared to the theoretical res
A simple strategy which attempts to saturate these up
bounds is studied in Sec. V, while our conclusions are p
sented in Sec. VI.

II. UNSUPERVISED LEARNING

In order to obtain a good candidate vectorJ, we construct
a cost function of the formH5(m

aNV(lm), where lm

[J•jm/AN. In the Gaussian scenario, thepotential Vhas a
quadratic form

V~l!5
c

2
l22dl. ~4!

Learning is defined as samplingJ from the Boltzmann dis-
tribution with temperatureT51/b

P~JuD !5
P~J!

Z
exp2b(

m

aN

V~lm!, ~5!

where Z(D)5*dJ P(J)exp2bH is the normalization con-
stant and the measureP(J) is used to enforce either a binar
@P(J)5Pb(J)# or a spherical@P(J)5Ps(J)# constraint on
J. While the spherical case has been dealt with in Ref.@5#,
we focus now on the case where the candidate vectors
binary components. The thermodynamic properties of suc
system can be read from the free energyf [2(1/bN)ln Z. In
the thermodynamic limitN→`, f becomes self-averaging
^ f (D)&D5 f , and can be calculated via the replica trick. Th
by now standard calculation will not be reproduced he
only the results are quoted: for a replica symmetric ans
the quadratic forms of the Gaussian scenario allow the
culations to be performed exactly, and the free energy re

f 5Extrq,R,q̂,R̂H ~12q!q̂

2b
1

R̂R

b
2

1

bE Dz ln cosh~zAq̂1R̂!

1
a

2b
ln@11cb~12q!#

1aFc@q2R2~A2B2!#22BRd2d2b~12q!

2@11cb~12q!# G J . ~6!

The above order parameters are also self-averaging qu
ties and can be interpreted as follows:R5B•J/N measures
the alignment between a typical~binary! sample of Eq.~5!
and the preferential direction, its absolute value as a func
of a being hereafter used to account for the performance
a given potentialV; q5J•J8/N is the mutual overlap be
tween two different samples of Eq.~5!, while R̂ andq̂ are the
associated conjugate parameters. The equilibrium value
the four variables are determined by the solution of
saddle point equations which arise from the extremum
erator in Eq.~6!.
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III. GIBBS LEARNING

Gibbs learning arises as a particular but very import
case in this general framework. In order to define it prope
we first recall the Bayes inversion formula

p~BuD ![
P~DuB!Pb~B!

P~D !
. ~7!

The posterior distributionp(BuD) expresses the knowledg
aboutB which is gained after the presentation of the da
ReplacingB with J in this formula gives the probability
density thatJ is the ‘‘true’’ direction B, given the data vec-
tors. Note that the binary prior in Eq.~7! constrains the ac-
ceptable candidatesJ to the corners of theN hypercube, i.e.,
JP$21,11%N. Making use of Eq.~2!, one rewrites

p~JuD !}Pb~J!)
m

p

exp2U~J•jm/AN!, ~8!

apart from a normalization constant. Gibbs learning is
fined as sampling from distribution~8!.

A comparison with Eq.~5! shows that the thermodynam
ics of such a process is obtained by settingbV5U @3,4#.
Upon substitution ofb51, c5A/(12A) and d5B/(1
2A) in Eq. ~6!, one finds that the extremum of the corr
sponding free-energy is reached forqG5RG and q̂G5R̂G ,
where the subscriptG will hereafter be used to denote resu
from Gibbs learning. The equalities reflect the symmet
role played byJ andB in Gibbs learning, a property which
has been previously noted in several publications~see, e.g.,
Refs.@10# and@11#, among others!. The four original saddle
point equations are then effectively reduced to a single o

RG5FB
2
„F~ARG!…, ~9!

where

FB~x![AE Dz tanh~zx1x2! ~10!

is a function coming from the entropic term of the free e
ergy, while

F 2~ARG!5aFB21ARG~A2B2!

12ARG
G . ~11!

The solution of Eq.~9! also determines the value of the co
jugate parameterR̂G :

R̂G5F 2~ARG!. ~12!

In order to check that the replica symmetricansatz is
correct, we also study the entropys[b2(]/]b)@ f
2(ln 2)/b#, which for Gibbs learning reads

sG52
~11RG!R̂G

2
1E Dz ln 2 cosh~zAR̂G1R̂G!

2
a

2 F lnS 12ARG

12A D1~B22A!~12RG!G . ~13!
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On physical grounds, this quantity should always rem
positive. Additionally, by relatingsG with the mutual infor-
mation i per degree of freedom between the dataD and the
preferential directionB, Herschkowitz and Nadal@9# show
that it cannot decrease faster than linearly witha. For the
Gaussian scenario, the inequality readssG> ln 22(a/2)@B2

2A2 ln(12A)#. Before we proceed to study in detail th
solution of Eq.~9!, we turn to the analysis of the asymptot
behavior of the system.

A. Asymptotics

The asymptotics of the solution of Eq.~9! can be imme-
diately inferred by carrying out expansions ofFB andF. In
the vicinity of RG50, if we assume a smooth behavior f
RG(a), the predictions for the Gaussian scenario are

BÞ0⇒RG.aB2, ~14!

B50⇒RGH 50, a<aG ,

.CG~a2aG!, a>aG ,
~15!

where

aG[
1

A2
,

~16!

CG[
A2

12A
.

We see that in the so-called biased caseBÞ0, it is much
easier to learn. The unbiased caseB50 presents much mor
difficulties for information about vectorB to be extracted,
due to the intrinsic symmetryB→2B. In this case, retarded
learning occurs@2,3#, meaning that a nonzero macroscop
overlapRG will be obtained only after a critical number o
examplesaGN is presented. Fora<aG , the entropy satu-
rates its linear bound exactly@9#. This second order phas
transition is identical to the one obtained in the spheri
case@5,6#, revealing that the binary nature of the preferent
direction plays no role in the poor performance regime.

In the limit a→`, on the other hand, the differences wi
respect to the spherical case become pronounced:RG ap-
proaches 1 exponentially,

12RG .
a→`A p~12A!

2a~B2~12A!1A2!
e2a(B21 A2/12A)/2,

~17!

as opposed to the power law observed for the spherical c
Equation~17! also implies an exponential decay to the e
tropy sG.a(12RG)@B2(12A)1A2#/@2(12A)#.

These qualitative asymptotic results can be shown to h
for general distributionsP(b) @12#. In the following, we ex-
plore the Gaussian scenario in more detail, studying the
havior of RG(a) away from the asymptotic regimes.

B. The biased case

The first case to be addressed isA50 with BÞ0. The
nonzero bias makes sure learning starts off as soon aa
n

l
l

se.
-

ld

e-

>0, whileA50 eliminates the dependence ofR̂G on RG @see
Eqs.~11! and~12!#, much simplifying the saddle point equa
tions, which can be solved exactly. The behavior ofRG is
seen to be simply determined by the rescaled variable

a8[aB2, ~18!

namely,RG5FB
2(Aa8). This function can be seen in Fig. 1

It shows a linear increase for smalla8 and an exponentia
behavior fora8→`. The entropy saturates its linear boun
only in the limit a8→0, approaching zero exponentiall
whena8→` but remaining otherwise strictly positive.

Note thatA50 means thatb has unit variance. The pat
terns can thus be pictured as being distributed in
N-dimensional spherically symmetric cloud, whose displa
mentB from the origin conveys the information aboutB.

Simulations.Binary disordered systems are known to
very hard to simulate due to the existence of very many lo
minima. A noisy dynamics with unity temperature and ge
eral cost functionU will typically get stuck in one of these
minima, preventing a proper sampling of the posterior dis
bution ~8! in an acceptable time. The Gaussian scenario w
A50 provides an exception to this rule, allowing Gibb
learning to be very easily implemented with a simple M
tropolis algorithm@13#. SinceA50 implies a linear function
U(l), the changes in energy can be very quickly calcula
because it depends only onJ•(mjm.

Figure 1 shows the results for simulations withN5100
~the smallest system size simulated! and two values ofB,
checking the relevance of the variablea8. For each pattern
set D, ten samples ofRG and qG were measured, after
random initialization of the system and a warming up of t
dynamics~see further details below!. The whole procedure
was repeated for 1000 pattern sets and the standard devi
was calculated over these 10 000 samples.

The measurement ofqG during simulations is another too
to check both the propertyqG5RG and the correctness of th
RS ansatz. Figure 2 focus on the second simulated poin
Fig. 1 (a851). It shows histograms for bothRG and qG
~measured between pairs of consecutive samples! which are

FIG. 1. OverlapRG ~left axis! as a function ofa8 for A50 @see
Eq. ~18!#: theory ~solid line! and simulations withN5100 ~sym-
bols; error bars represent one standard deviation, see text fo
tails!. The dashed line represents the entropy~right axis! while the
dotted line shows the linear bound~right axis!.
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virtually indistinguishable on the scale of the figure, with
mean value in excellent agreement with the theoretical p
diction. The upper inset gives a glimpse of theMETROPOLIS

dynamics: the system is initialized randomly att50 and
evolves up tot550 Monte Carlo steps per site~MCS/site!, at
which moment a different pattern set is drawn. The syst
reaches thermal equilibrium afterO(10) MCS/site, which
motivated the choice of safely waiting 100 MCS/site duri
the simulations before any measurement was made. The
tem was reinitialized after every measurement of the ov
laps. Note that some pattern sets yield time-averaged va
of RG which deviate from theory~notably the first one for
N5100 and the second one forN51000) and only a secon
average over the pattern sets gives the right results.
reflects the property of self-averaging, which only holds
the thermodynamic limit~note that deviations from theor
are smaller for largerN). The lower inset shows the typica
scaling with 1/AN of the width of the distribution of over-
laps.

C. The unbiased case

When B50, retarded learning is expected to occur, a
cording to Eq.~15!. Figure 3 shows the solution of theRG
saddle point equation for two values ofA, namely, 0.6 and
20.6. In both cases, a second-order phase transition oc
at the critical valueaG predicted by Eq.~16! and the entropy
saturates exactly the linear bound before the phase trans
Based on the relation betweensG and i @9#, the retarded
learning phase transition can be interpreted as follows:
a<aG , the system extracts maximal information from ea
pattern but is nonetheless unable to obtain a nonzero a
ment RG with the preferential directionB. Only at a5aG
doesRG depart from zero, which on its turn immediate
gives an increasing degree of redundancy~measured by the
deviation ofsG from its linear bound! to the patterns coming
thereafter. Figure 3 also shows the effect of a small biaB

FIG. 2. Gaussian scenario withA50, B51, anda51. Histo-
grams ofqG ~thick lines! andRG ~thin lines! for N5100 ~dashed!
andN51000 ~solid!; the vertical line is the theoretical prediction
The upper inset shows theMETROPOLIS RG dynamics for two pat-
tern sets~same legend, see text for details!. The lower inset present
the variance of the distribution forRG ~symbols! as a function of
1/N for N5100,500,750, and 1000; the dotted line is a linear fit
the three leftmost points.
e-

m
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50.1 in an otherwise symmetric distribution: for sufficient
largea ~say,a@aG), the effect is negligible, but for smalla
the broken symmetry destroys the second order phase
sition.

It is interesting to note in Fig. 3 that even though t
phase transition forA520.6 andA50.6 occurs at the sam
critical value, the overlap increases much slower in
former case than in the latter. Recalling the definition ofA
@Eqs.~2!,~3!#, this means that prolate Gaussian distributio
(N-dimensional ‘‘cigars’’@2#! convey less information abou
the preferential direction than oblate distributio
(N-dimensional ‘‘pancakes’’@2#! for the same absolute valu
of A.

However, the second order phase transition ataG5A22 is
not the only interesting phenomenon for this model. Fi
order phase transitions are also possible, depending on
value of A. They can occur in two situations: either fora
.aG , in which case two consecutive phase transitions t
place during learning~a second-order one followed by
first-order one! or a,aG , in which case the asymptotic re
sult Eq. ~15! is overridden. The first-order phase transitio
appears when there is more than one solution to the sa
point equation. In such cases the solution with minimal fr
energy has maximal probability of occurrence, being thus
thermodynamically stable state. Such first-order phase t
sitions have been found for the spherical case with a tw
peaked distribution@7#, but not with the Gaussian scenar
@5#, which shows that they are due to the discrete nature
the search space in this case.

An overview of this phenomenology is presented in F
4. It shows the three typical behaviors that occur forB50.
For comparison, the caseA50.6 plotted in Fig. 3 is shown
again, as an example of a parameter region where the
only a second order phase transition~at aG52.78). ForA
50.78 the second-order phase transition ataG51.643 is fol-
lowed by a first-order phase transition ataG

( f )51.704~upper
inset, lower axis!, while for A50.85 only a first-order phase
transition takes place ata51.27, overriding the second
order phase transition ata51.38 ~lower inset! which was

f

FIG. 3. RG ~thick lines, left axis! andsG ~thin lines, right axis!
as functions ofa for A560.6 andB50. The thin dotted lines
correspond to the linear bound, which is exactly saturated up to
second order phase transition. A small biasB50.1 ~with A50.6)
breaks the symmetry and destroys the second order phase tran
~thick dotted line, left axis, entropy not shown!.
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PRE 61 6975UNSUPERVISED LEARNING OF BINARY VECTORS: A . . .
predicted on asymptotics and smoothness grounds. Note
none of these first-order phase transitions can be predicte
the asymptotic expansion, Eq.~15!. It is also interesting to
observe that some solutions of the saddle point equation
violate the linear bound and/or the positivity of the entro
~notablyA50.85 in Fig. 4!. However, it turns out that thes
branches are always thermodynamically unstable, while
stable solutions satisfy all the requirements.

The whole phase diagram forB50 is shown in Fig. 5.
For A.A1.0.773, a first-order phase transition takes pla
at the lineaG

( f )(A), after the second-order one has alrea
occurred. For increasingA, aG

( f )(A) gets closer and closer t
aG(A), until there is finally a collapse atA5A2.0.808. For
larger values ofA, only the first-order phase transition o
curs.

IV. OPTIMAL LEARNING: THE BAYESIAN
PERSPECTIVE

We now switch to the following question: given theaN
data vectors and the prior information aboutB, what is the

FIG. 4. SolutionsRG of the saddle point Eqs.~9! and ~11! as a
function of a for B50 and three values ofA. sG is plotted with
dashed lines and the thermodynamically stable solutions are plo
with thick lines.A50.78 ~upper inset!: RG ~left axis! vs a ~bottom
axis! andsG ~right axis! vs a ~top axis—note the differenta scale,
which zooms in the first-order phase transition!; A50.85 ~lower
inset!: RG ~left axis! andsG ~right axis! vs a.

FIG. 5. Phase diagram for the unbiased case (B50). Second
order phase transitions occur ata5aG5A22 ~solid line!, while
first order phase transitions take place ata5aG

( f ) ~dashed line!. See
text for details.
hat
by
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bestperformanceR one could possibly attain with a vecto
J? Watkin and Nadal@3# answered this question in a Baye
sian framework by definingoptimal learning~see also Refs.
@14,15#!. We briefly review their reasoning here and extend
to take into account the binary nature of the vectors.

We define the quality measureQ(B,J)[B•J/N, which
quantifies how wellB is approximated by any candidate ve
tor J satisfyingJ•J5N. SinceB is unknown,Q is formally
inaccessible. But one can take its average with respect to
posterior distribution ~7!, leading to Q̃(J,D)
[*dB Q(B,J)p(BuD). Q̃ is then a formally accessiblebona
fide quantity which can be used to measure the performa
of J.

Optimal learning isdefinedas constructing a vectorJB

which maximizesQ̃. The linearity ofQ in J immediately
implies

Q̃~J,D !5N21J•E dB B p~BuD !, ~19!

leading on its turn to

JB5
1

ARG
E dB B p~BuD !, ~20!

where theARG factor guarantees the proper normalization
JB . This is the so-called Bayesian vector, which is the cen
of mass of the Gibbs ensemble. In the thermodynamic lim
its performanceRB[B•JB /N is shown to be simply related
to that of Gibbs learning@15,3#: RB5ARG.

A. The best binary

Up to now the reasoning is fairly general. The whole pr
cedure can actually be carried out without explicitly me
tioning what the prior distributionP(B) is. For clarity, in the
following JB will specifically denote the Bayesian vector fo
a binary prior. Note, however, that despite being the cen
of mass of the ensemble ofbinary vectors sampled from the
posterior distribution,JB has real-valued components@12#, in
general.

One would therefore like to address the next questi
what is thebest binaryvector one can construct? In othe
words, what is the binary vector—inferable from the data
that outperforms—on average—any other binary vector
approximatingB? The answer is again straightforward@16#:
the vectorJbb which maximizesQ̃ among the binary vectors
is simply obtained by the clipping prescription, name
@Jbb# j5sgn(@JB# j ), j 51, . . . ,N or, in shorthand notation,

Jbb5Fclip~JB!. ~21!

This can be easily checked by noting that the quantity to
maximized@the right-hand side of Eq.~19!# is proportional
to ( j 51

N Jj@JB# j . In what follows,Jbb is called the best binary
vector. Summarizing, ifB is known to be binary,JB is the
best estimator one can provide. But if the estimator is
quired to be binary as well, thenJbb is the optimal choice.

The proof thatJB andJbb are optimal estimators in thei
respective spaces, is relatively simple@4#. What we show
below is that maximalQ̃ implies maximal alignmentR with

ed
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B, in the thermodynamic limit. For the best binary, one d
parts from the inequalityQ̃(Jbb)2Q̃(J)>0, ;JP$21,
11%N and takes the average with respect to the data di
bution

E dD P~D !@Q̃~Jbb!2Q̃~J!#5E dB Pb~B!E dD P~DuB!

3FB•Jbb

N
2

B•J

N G>0. ~22!

If we now assume thatRbb[B•Jbb /N andR5B•Jbb /N are
self-averaging, the average over the data can be by-pa
and one obtains

E dB Pb~B!@Rbb2R# >
N→`

0. ~23!

Finally, one notices thatPb(B) is a uniform prior, making no
distinction between any particular binary vector~this is re-
flected, for instance, in the free energy 6 being independ
of the particular choice ofB): this allows the last average i
Eq. ~23! to be by-passed as well, leading to the stron
upper boundRbb>R.

B. Performance and simulations

The performanceRbb of the best binary vector can b
explicitly calculated by extending previously obtained resu
for the clipping prescription@17,18#. In Ref. @18#, Schietse
et al. study the effect of a general transformationJ̃ j

5ANf(Jj )/A( if
2(Ji) on the components of a proper

normalized continuous vectorJ satisfyingB•J/N5R. If B is
binary, f is odd andR̃[B• J̃/N is self-averaging, then the
following relation follows:

R̃5

E P~x! f~x! dx

F E P~x! f2~x! dxG1/2, ~24!

where the variablex[B1J1 is expected to be distributed in
dependently of the index, because of the permutation s
metry among the axes.

We are left then with the problem of calculatingP(x),
after which Eq.~24! can be applied forf(x)5sgn(x), pro-
viding Rbb as a function ofRG . If J is uniformly distributed
on the coneB•J5NR, then P(x) is just a Gaussian with
meanR and variance 12R2 @18#. However, this can hardly
be expected to hold for the Bayesian vector, since it is a s
of Ising vectors. One would naively expectJB to be closer to
the corners of theN-hypercube instead. To obtain the re
evant Pc.m.(x)[P(x5B1@JB#1), we calculate themth
quenched moment of@JB#1,

^~@JB#1!m&D

5
1

RG
m/2

K Z2mS E dJ Pb~J! J1e2b(
m

aN

U(lm)D mL
D

.

~25!
-

ri-

ed

nt

r

s

-

m

The above expression can be evaluated again with the us
the replica trick. The replica symmetric result is

^~@JB#1!m&D5
1

@RG~a!#m/2E Dz $tanh@zAR̂G~a!

1R̂G~a!B1#%m ~26!

or, equivalently,

^xm&D5
1

@RG~a!#m/2E Dz $tanh@zAR̂G~a!1R̂G~a!#%m,

~27!

where the values ofRG(a) andR̂G(a) should be taken at the
solution of the saddle point Eqs.~9! and~12! for Gibbs learn-
ing. Notice that the passage from Eq.~26! to Eq.~27! is valid
only if B is binary. From Eq.~27! one immediately rewrites
the probability distributionPc.m.(x), by identifying a change

of stochastic variablesx5RG
21/2tanh(zAR̂G1R̂G), with z

normally distributed:

Pc.m.~x!5
ARG

A2pR̂G
~12RGx2!

3exp
21

2R̂G
F1

2
lnS 11ARGx

12ARGx
D 2R̂GG 2

. ~28!

Note that sinceRG and R̂G are simply related to each othe
@Eqs. ~9! and ~12!#, Pc.m.(x) can always be parametrized i
function ofRG only. In Fig. 6, the probability distribution of
y[xARG is plotted for different values ofRG , illustrating
the fact thatuyu<1.

Equation~28! should be compared to the Gaussian dis
bution obtained in Ref.@18#. It shows thatJB is indeed closer
to the corners of theN hypercube, optimally incorporating
the information thatB is binary.

We have run simulations forA50 andB51 as described
in Sec. III B. For a system sizeN5500, the center of mas
was constructed withn550 samplers, being normalized a
terwards. Each component ofB andJB was used to measur
x, the procedure being repeated 100 times for each of the

FIG. 6. Probability distribution ofy5B1^J1&J for different val-
ues ofRG .
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pattern sets. A comparison between the resulting histog
and the theoretical prediction can be seen in Fig. 7. The g
agreement shows that Eq.~28! correctly describes the statis
tical properties of the Bayesian vector.

We can finally proceed to calculate the performanceRbb
of the best binary vector. Making use of Eqs.~24! and ~28!,
we make a change of variables to obtain

Rbb5E Pc.m.~x! sgn~x! dx5122H@AR̂G~a!#, ~29!

whereH(x)[*x
`Dz. Making use of the relation betweenRG

and R̂G , we finally write

Rbb5122H@FB
21~RB!#5122H@FB

21~ARG!# ~30!

5122H@F~RB!#5122H~AR̂G!, ~31!

whereFB
21 is the inverse ofFB .

Equation~30! expresses an upper bound for binary can
date vectorsJ in approximatingB, satisfying two obvious
inequalitiesRG<Rbb<RB . The asymptotic behavior ofRbb
can always be written in terms ofRG : in the poor perfor-
mance regime (RG→0), one recovers previous results f
clipping a spherical vector@18,19#, Rbb.A2RG /p, while in
the largea regime (RG→0) a faster exponential decay
achieved than with Gibbs learning 12Rbb.(2/p)(12RG)
@12#.

As a spin-off of the calculation, we have also obtained
overlap between the Bayesian vector and its clipped coun
part, G[JB•Jbb /N5N21( j

Nu@JB# j u. This quantity can be
easily computed:

G5
1

RB
E Dz utanh@zAR̂G~a!1R̂G~a!#u5

Rbb

RB
, ~32!

if one notices the counterintuitive identity*Dz utanh(za
1a2)u5*Dz sgn(za1a2), ;a, which is proved in the Ap-
pendix. The simple resultG5Rbb /RB immediately implies
the equality (Jbb2GJB)•(JB2RBB)50, for which we still
have not found a deeper interpretation.

FIG. 7. Gaussian scenario withA50 andB51. Probability dis-
tribution of x5B1@JB#1 for a50.25, a50.6 ~left plot!, and a
51.17 ~right plot! or, correspondingly,RG50.2, RG50.4 andRG

50.6. Solid line: simulations. Dashed line: theory@Eq. ~28!#.
m
d

-

e
r-

The curvesRbb , RB , andG as functions ofRG are plotted
on Fig. 8, together with results for simulations with the sa
parameters as those of Fig. 7. The data is in excellent ag
ment with the theoretical results, errors generally remain
below the margin of one standard deviation. Note thatG
>A2/p, with equality holding only forRG→0. This result is
another confirmation of the picture thatJB lies closer to the
binary vectors, sinceA2/p is the overlap between a continu
ous vector isotropically sampled from theN hypersphere and
its clipped counterpart. Figure 9 zooms in the fourth colum
of points of Fig. 8 (a51.17), showing the histograms of th
overlaps. One observes that the distribution ofG is much
sharper than the other ones, while the statistics ofRG is
better because it hasn550 times more samples.

V. TRANSFORMING THE COMPONENTS

A. General results

Since sampling the binary Gibbsian vectors is usually
very difficult task, the construction of the Bayesian vec
according to the center of mass recipe is not always poss
in practice. Alternative methods should therefore be dev
oped for approximating theRB and Rbb performances. One

FIG. 8. Rbb , RB , andG: comparison between simulations an
theory, for different values ofa. Error bars represent one standa
deviation. The diagonal is plotted for comparison.

FIG. 9. Histograms of the overlapsRG , RB , Rbb , and G for
a51.17. The vertical lines show the theoretical predictions.
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such method is the technique of transforming the com
nents of a previously obtainedsphericalvector, as described
in Sec. IV B. In the following, we first derive general resu
~for any functionU) and subsequently look at the Gaussi
scenario in detail.

A natural choice for the vector to be transformed isJopt
s ,

which can be obtained by minimizing—in theN
hypersphere—an optimally constructed cost function@5–8#
H5(mVopt

s (lm). It attains the Bayes-optimal performanc
Ropt

s [B•Jopt
s /N for the spherical case, which satisfies

Ropt
s 5Fs~F~Ropt

s !!, ~33!

whereFs(x)[x/A11x2. Note thatJopt
s saturates the perfor

mance of the center of mass of the Gibbs ensemblefor a
spherical prior. Equation ~33! should be compared to th
performance ofJB , which obeys

RB5FB„F~RB!…. ~34!

While Ropt
s .RB for small a, the differences betweenJB and

Jopt
s are clearly manifested in the asymptotic behavior

largea, with Ropt
s approaching unity with a power law@5,6#

instead of the exponential decay of Eq.~17!.
We would like to depart fromJopt

s and obtain approxima
tions to bothJbb and JB . The first one is obtained by clip
ping, Jclip

s [Fclip(Jopt
s ). The second one relies on an optim

transformation @18# f* (x)[@P(x)2P(2x)#/@P(x)
1P(2x)#, which maximizes the transformed overlap.1 The
vector obtained by such a transformation onJopt

s is denoted
by J

*
s , thus @J

*
s # j5f* (@Jopt

s # j )/R*
s , j 51, . . . ,N, where

R
*
s [B•J

*
s /N.

SinceJopt
s contains no information about the binary natu

of B, the results of Schietseet al. can be directly applied to
renderRclip

s [B•Jclip
s /N andR

*
s . In this case,P(x) is Gauss-

ian and one obtains@18#

Rclip
s 5122H„F~Ropt

s !… ~35!

R
*
s 5FB„F~Ropt

s !…. ~36!

We would like to compare Eqs.~30! and ~34! with Eqs.
~35! and ~36!, respectively. Despite their resemblance
form, one notices that the former should be solved, while
latter just map the solution of Eq.~33!. In order to compare
the equations, one should first note thatFB(x)>Fs(x), ;x
>0. Since]F/]R>0, in generalRB>Ropt

s . This result in
turn immediately implies the inequalities

Rclip
s <Rbb , ~37!

R
*
s <RB , ~38!

with equality holding for both equations in the asympto
limits a→` andRG→0. This general behavior is confirme
in Fig. 10, which shows the results for the Gaussian scen
in the two relevant cases: zero and nonzero bias.

1Consistently, the optimal transformation forP(x)5Pc.m.(x) be-
comesf* (x)}x, that is, no improvement is possible.
-

r

l

e

io

Another available measure of the success of the opti
transformationf* in rendering a good approximation fo
JB , is the probability distribution P(x* ), where x*
[f* (x)/R

*
s . In order to obtainP(x* ), one just has to recal

that P(x) is Gaussian with meanRopt
s and variance 1

2(Ropt
s )2. The optimal transformation is thenx*

5f* (x)/R
*
s 5tanh$Ropt

s x/@12(Ropt
s )2#%/R*

s , and can be re-
garded as an attempt to attach some structure to the dist
tion of the transformedx* . With a simple change of vari-
ables,P(x* ) is readily seen to be

P~x* !5
R

*
s A12~Ropt

s !2

A2pRopt
s @12~R

*
s x* !2#

3expH 2@12~Ropt
s !2#

2~Ropt
s !2 F1

2
lnS 11R

*
s x*

12R
*
s x*

D
2

~Ropt
s !2

12~Ropt
s !2G 2J . ~39!

A comparison with Eq.~28! shows that the two equations a
very similar, but not identical. Some similarity in shap
should indeed be expected, mainly becauseP(x* ), just like
Pc.m.(x), must be such that @P(x)2P(2x)#/@P(x)1P
(2x)#}x, in order to consistently prevent any further im
provement by a similar transformation. One can verify
Fig. 11 that the resemblance between the probability dis
butions is closely associated with the success ofR

*
s in satu-

rating the upper boundRB . The curves correspond to th
Gaussian scenario withA51/3 andB50.1 for two values of
a ~one can thus refer to the upper solid curves of Fig. 1!.
Note that fora58, the difference betweenRB and R

*
s is

very small in Fig. 10, which is reflected in the solid curves
Fig. 11 being very close to each other. Accordingly, t
dashed curves in Fig. 11 get further apart fora510 as the
mismatch between the overlaps increase in Fig. 10.

FIG. 10. Overlaps as functions ofa for two choices of param-
eters in the Gaussian scenario:A51/3 with B50.1 ~upper curves!
and A521/3 with B50 ~lower curves!. The upper boundsRB

~solid! and Rbb ~dashed! are depicted with thick lines, while the
approximationsR

*
s ~solid! and Rclip

s ~dashed! are plotted with thin
lines.
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B. The biased case

The simple biased case withA50 andBÞ0 provides an
interesting exception to the performances ofJ

*
s and Jclip

s .
The fact thatU(b) is linear implies]F/]R50, as can be
readily verified in Eq.~11!. This, on the other hand, implie
the equalities in Eqs.~37! and ~38!, that is,

Rclip
s 5Rbb , ~40!

R
*
s 5RB . ~41!

Therefore the strategy described in the previous sectio
successful in attaining the upper bounds of Sec. IV, and
only asymptotically. It should be noted that for a linearU,
the vectorJopt

s can be simply constructed with the Hebbia
rule, Jopt

s }(m
aNjm, ;a. Therefore the best binary perfo

mance is attainable by the clipped Hebbian vectorJclip
s , in

this case. The second equality, however, seems to us m
remarkable, because it establishes a result which we c
not find elsewhere in the literature: the optimal transform
tion manages to completely incorporate the informat
about the binary nature ofB, leading to the Bayes-optima
performanceRB without the need of explicitly constructin
the center of mass of the Gibbs ensemble. In other words
technique of non-linearly transforming the components
the vectors, introduced in Ref.@17# and extended in Ref
@18#, is able to give a definitive answer to the problem it aim
to solve.

VI. CONCLUSIONS

We have presented results on learning a binary prefe
tial direction from disordered data. Constraining the can
date vectors to the binary space as well, we first showed

FIG. 11. DistributionsPc.m.(x) ~thick! andP(x* ) ~thin! accord-
ing to Eqs.~28! and~39!, respectively. The valuesa58 ~solid! and
a510 ~dashed! refer to the Gaussian scenario withA51/3 andB
50.1 ~see Fig. 10!.
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Gibbs learning presents not only an exponential asympt
decay and second-order ‘‘retarded learning’’ phase tra
tions, but also first-order phase transitions for a sim
Gaussian scenario.

On the question of what is the optimal estimator, giv
the data and the knowledge that the preferential directio
binary, we have shown that the answer depends on wh
space the estimatorJ is allowed to lie in. The best continu
ous estimator is the Bayesian vector, which is the cente
mass of binary Gibbsian vectors. The best binary vecto
obtained by clipping the Bayesian vector. We have cal
lated its properties in detail, providing an upper bound to
performance of binary vectors.

Finally, we have also studied one possible way of co
structing approximations to these two optimal estimators.
transforming the components of a previously obtained c
tinuous vector, we show that the upper bounds cannot
saturated, in general. Exceptions to this rule are
asymptotic limits~both RG→0 anda→`) and the special
case of a linear functionU. Interestingly, the linear case als
seems to be the only one in which Gibbs sampling can
performed without computational difficulties. We are ther
fore left with a situation where the approximations work pe
fectly only in the case where they are actually not need
We believe this kind of result reinforces the need of inves
gating the connection between results in statistical mecha
and computational complexity theory.
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APPENDIX

In order to show that Eq.~32! is correct, one just has to
show that the integral below vanishes identically,;a:

E Dz @sgn~az1a2!2utanh~az1a2!u#

5E Dz sgn~az1a2!@12tanh~az1a2!#

5
z5y2aE dy

A2p
e2(y2a)2/2 sgn~ay! @12tanh~ay!#

5e2a2/2E Dy sgn~ay! eayF e2ay

cosh~ay!G50. ~A1!
@1# M. Biehl and A. Mietzner, Europhys. Lett.24, 421 ~1993!.
@2# M. Biehl and A. Mietzner, J. Phys. A27, 1885~1994!.
@3# T. L. H. Watkin and J.-P. Nadal, J. Phys. A27, 1899~1994!.
@4# P. Reimann and C. Van den Broeck, Phys. Rev. E53, 3989
~1996!.
@5# P. Reimann, C. Van den Broeck, and G. J. Bex, J. Phys. A29,

3521 ~1996!.
@6# C. Van den Broeck and P. Reimann, Phys. Rev. Lett.76, 2188



ys.

6980 PRE 61MAURO COPELLI AND CHRISTIAN VAN den BROECK
~1996!.
@7# A. Buhot and M. B. Gordon, Phys. Rev. E57, 3326~1998!.
@8# M. B. Gordon and A. Buhot, Physica A257, 85 ~1998!.
@9# D. Herschkowitz and J.-P. Nadal, Phys. Rev. E59, 3344

~1999!.
@10# G. Györgyi, Phys. Rev. A41, 7097~1990!.
@11# M. Opper, Phys. Rev. Lett.72, 2113~1994!.
@12# M. Copelli, C. Van den Broeck, and M. Opper, J. Phys. A32,

L555 ~1999!.
@13# K. Binder and D. W. Heermann,Monte Carlo Simulation in

Statistical Physics: An Introduction~Springer-Verlag, Berlin,
1988!.
@14# M. Opper and D. Haussler, Phys. Rev. Lett.66, 2677~1991!.
@15# T. L. H. Watkin, Europhys. Lett.21, 871 ~1993!.
@16# T. L. H. Watkin, A. Rau, and M. Biehl, Rev. Mod. Phys.65,

499 ~1993!.
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