Overdiagnosing Vascular Dementia using Structural Brain Imaging for Dementia Work-Up

Ellis Niemantsverdriet¹, Bart E.E. Feyen¹, Nathalie Le Bastard⁴, Jean-Jacques Martin⁵, Johan Goeman⁶, Peter Paul De Deyn⁶, and Sebastiaan Engelborghs⁶,∗

¹Reference Center for Biological Markers of Dementia (BIODEM), Laboratory of Neurochemistry and Behavior, and Biobank, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
²Department of Neurology and Memory Clinic, Hospital Network Antwerp, Middelheim and Hoge Beuk, Antwerp, Belgium
³Department of Neurology and Memory Clinic, Hospital Network Antwerp, Middelheim, Antwerp, Belgium
⁴Department of Neurology and Alzheimer Research Center, University of Groningen and University Medical Center Groningen (UMCG), Groningen, The Netherlands
⁵Current affiliation: Fujirebio Europe, Ghent, Belgium

Handling Associate Editor: Piotr Lewczuk

Accepted 15 January 2015

Abstract. Hypothesizing that non-significant cerebrovascular lesions on structural brain imaging lead to overdiagnosis of a vascular etiology of dementia as compared to autopsy-confirmed diagnosis, we set up a study including 71 patients with autopsy-confirmed diagnoses. Forty-two patients in the population (59%) appeared to have definite Alzheimer’s disease (AD), whereas 29 (41%) had a non-AD dementia form. The panel clinically diagnosed possible or probable vascular dementia (VaD) in 27 (38%) patients, whereas only five (19%) patients (p = 0.017) had an autopsy-confirmed diagnosis of VaD. Patients with vascular lesions on structural brain imaging were often misdiagnosed as possible or probable VaD as compared to autopsy-confirmed diagnosis.

Keywords: Alzheimer’s disease, brain imaging, dementia, differential dementia diagnosis, magnetic resonance imaging, vascular dementia

INTRODUCTION

By performing a clinical diagnostic dementia work-up in elderly patients, frequently concomitant diseases or abnormalities on technical examinations are observed [1, 2]. It is often difficult to judge whether these concomitant factors are clinically relevant and thus contribute to the dementia syndrome. This is especially the case with ischemic lesions on structural brain imaging in elderly, which leads to difficulties to differentiate between Alzheimer’s disease (AD), vascular dementia (VaD), and AD with clinically significant cerebrovascular disease (CVD) [3, 4]. The diagnosis of VaD, and its differentiation from AD, is based on the presence of vascular risk factors, neuroimaging,
and clinical features such as acute onset and stepwise progression.

In order to test the hypothesis that non-significant cerebrovascular lesions on structural brain imaging lead to overdiagnosis of a vascular etiology of dementing disorders, this study determined the clinical dementia diagnosis of a standard dementia work-up as compared to autopsy-confirmed diagnoses.

MATERIALS AND METHODS

Study population

Seventy-one demented patients with autopsy-confirmed diagnoses were included. Patients were recruited through the Memory Clinic of Hospital Network Antwerp (n = 64) and through centers referring to the Biobank of the Institute Born-Bunge (n = 7). Based on a presentation (by BF) of the information gathered during the clinical diagnostic work-up at enrollment in the study, a panel of three neurologists experienced with dementia (JG, PPDD, SE) made a consensus clinical dementia diagnosis. The panel was blinded for the clinical diagnoses that were mentioned in the clinical files of the included patients as well as for the neuropathological diagnoses. The panel was provided with clinical information, such as date of birth, age, gender, history of past illnesses, social history, onset and history of presenting complaint, familial history, medication, physical examination, clinical neurological examination, a complete neuropsychological examination including (among others) Mini-Mental State Examination scores (MMSE) [5], brain magnetic resonance imaging (MRI), and/or computed tomography (CT) scan.

This study was approved by the ethics committee of the UAntwerp, Antwerp, Belgium.

Clinical diagnostic criteria

Clinical diagnoses were based on standard clinical diagnostic criteria, allowing the panel to label each clinical diagnosis as probable or possible depending on the likelihood of it being the cause of dementia.

The diagnosis of probable AD was made according to the NINCDS-ADRDA criteria [6]. The combination of AD and CVD was diagnosed when patients fulfilled the criteria of probable AD according to NINCDS-ADRDA and, in addition, displayed CVD on brain CT and/or MRI that, however, did not meet the criteria of relevant CVD according to NINDS-AIREN criteria [7], thus excluding multiple large-vessel infarcts, strategically placed infarcts, multiple basal ganglia, and white matter lacunes or extensive white matter lesions. VaD was diagnosed according to the NINDS-AIREN criteria [7]. For the diagnosis of probable frontotemporal dementia (FTD), criteria described by Neary [8] were applied. Dementia with Lewy bodies (DLB) was diagnosed using the clinical diagnostic criteria of McKeith [9]. Parkinson’s disease dementia (PDD) was diagnosed when patients with idiopathic Parkinson’s disease (PD) developed dementia following a dementia-free interval of at least two years. The criteria for the diagnosis of idiopathic PD included the presence of at least two out of four motor manifestations that characterize the disease and an insidious onset [10]. Creutzfeldt-Jakob disease (CJD) was diagnosed according to the diagnostic criteria of Weber [11].

Neuropathological criteria

All pathological diagnoses were established according to standard neuropathological criteria by the same neuropathologist (JMJ). Although the neuropathologist was blinded for the consensus diagnoses of the clinical panel, he had access to all neuroimaging data. For the diagnosis of AD, VaD, and DLB the neuropathological criteria of Montine [12] were applied. FTD was neuropathologically diagnosed according to the Cairns criteria [13] and Mackenzie criteria [14, 15]. CJD was diagnosed according to Markesbery [16]. Neuropathology was performed on the right hemisphere of the brain.

Categorization of diagnoses

Subjects neuropathologically diagnosed as AD or AD with CVD were pooled in the AD group whereas VaD and other dementias were pooled in the NONAD group.

Statistical analyses

To describe and analyze our entire cohort categorical variables were analyzed with a chi-square test, and percentages were reported. Demographic comparisons were analyzed with unpaired t-tests, or in case of no normal distribution a Mann Whitney U test was used, and mean values with standard deviation were reported. For all analyses, p-values below 0.05 were considered significant. All statistical analyses were performed using IBM SPSS Statistics 20.
RESULTS

Population (Table 1)

Of the 71 patients, 38 were male (54%) and 33 were female (46%). There was no significant difference in the proportion of gender in the AD and NONAD patient groups. Definite AD was diagnosed in 42 patients (59%), whereas 29 (41%) patients had a NONAD dementia: VaD \((n = 6)\), FTD \((n = 9)\), DLB \((n = 10)\), and CJD \((n = 4)\). The NONAD group was significantly younger than the AD group, for both age at inclusion and age at death. MMSE scores were not significantly different comparing both groups. The interval between inclusion and autopsy was in most cases short (as 66% of the patients died within one year following inclusion), likewise as the interval between last clinical evaluation and autopsy. No significant differences were observed comparing intervals between inclusion/last clinical evaluation and autopsy between AD and NONAD groups. Structural neuroimaging data were available for all patients: CT \((n = 47)\) or MRI \((n = 24)\) brain scans.

Clinical dementia diagnoses as compared to autopsy-confirmed definite dementia diagnoses

In total, six patients were neuropathologically diagnosed with VaD (8%). The panel clinically diagnosed possible or probable VaD in 27 (38%) patients (with or without concomitant AD or DLB). Of those 27 patients, diagnosis of VaD was neuropathologically confirmed in only five (19%) patients \((p = 0.017)\). The other neuropathologically confirmed VaD patient was diagnosed during the clinical work-up as probable AD/possible DLB and did not show clinically relevant vascular disease according to the panel. During the seven month interval between inclusion in this study and death, no clinically overt symptoms of stroke had occurred in this patient.

The neuropathological diagnoses of five clinically diagnosed probable VaD patients was definite AD \((n = 3)\) and definite DLB \((n = 2)\). None of the cases that were clinically diagnosed as probable VaD were neuropathologically confirmed as VaD. Fourteen patients were clinically diagnosed as probable AD/possible VaD. However, neuropathologically, only two patients were diagnosed as VaD whereas the others were diagnosed as AD \((n = 7)\), FTD \((n = 4)\), and DLB \((n = 1)\). Lastly, eight clinical differential diagnoses consisted of probable VaD with another probable or possible dementia diagnosis, but only three of these were true VaD based on the neuropathological examination whereas the others were neuropathologically diagnosed as AD \((n = 3)\), FTD \((n = 1)\) and DLB \((n = 1)\).

DISCUSSION

In this study, patients with vascular lesions on structural brain imaging were often misdiagnosed as suffering of dementia with a presumed clinically significant vascular component as compared to the autopsy-confirmed diagnoses. After neuropathological confirmation, the majority of these subjects were diagnosed with other dementia types than VaD. In particular, none of the patients clinically diagnosed as probable VaD were neuropathologically confirmed as such. A clinical diagnosis of possible VaD in combination with AD or another neurodegenerative brain disorder showed better correspondence of clinical diagnosis with the neuropathological diagnosis.

A possible explanation is that non-significant cerebrovascular lesions (not contributing to pathophysiology of the dementia syndrome) observed with structural imaging of the brain were clinically overrated. Moreover, by using structural brain imaging only to exclude other brain pathologies, neurodegenerative brain disorders may be overlooked. From this point of

<table>
<thead>
<tr>
<th>Pathological diagnosis</th>
<th>Statistical analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD</td>
<td>NONAD</td>
</tr>
<tr>
<td>Gender (% male/female) (n)</td>
<td>52/48 (42)</td>
</tr>
<tr>
<td>Age at inclusion (y) (n)</td>
<td>80.1 [\pm 9.0] (42)</td>
</tr>
<tr>
<td>Age at death (y) (n)</td>
<td>82.0 [\pm 8.3] (42)</td>
</tr>
<tr>
<td>MMSE score out of 30 (n)</td>
<td>13.5 [\pm 6.3] (36)</td>
</tr>
<tr>
<td>Interval inclusion and autopsy (y) (n)</td>
<td>1.7 [\pm 2.4] (42)</td>
</tr>
<tr>
<td>Interval last clinical evaluation and autopsy (y) (n)</td>
<td>0.6 [\pm 1.7] (42)</td>
</tr>
</tbody>
</table>

Data are mean [SD], percentage (%), or number (n).

Table 1

Description of the population

Data are mean [SD], percentage (%), or number (n).
Fig. 1. Clinical diagnoses versus pathological diagnoses. The 27 clinically diagnosed cases with possible or probable VaD are subdivided into the different pathological diagnosis [VaD (n = 5), AD (n = 13), DLB (n = 4), or FTD (n = 5)]. view, structural brain imaging served as a confounder, leading to an overdiagnosis of VaD.

A promising approach that might overcome structural brain imaging being a potential confounder is the use of biomarkers to diagnose dementia, including the rating of hippocampal atrophy on brain MRI scan [17]. The inclusion of biomarkers in the revised research criteria for AD diagnosis will significantly increase the clinical diagnostic accuracy [17–19], as well as the chance to identify AD pathophysiology in dementias of mixed origin and also in prodromal AD [20–23]. However, the issue of judging whether cerebrovascular lesions on structural brain imaging are pathophysiologically and clinically relevant, and thus, contribute to the dementia syndrome will remain. Furthermore, many factors that were identified as contributing to CVD are frequently suspected as predisposing to AD as well, and therefore mixed dementias are probably underestimated [24].

The extensive use of CT scans (66%) compared to MRI scans in this study could be a limitation of this study. However, when imaging would only have been performed by MRI, the proportion of misdiagnosed patients might have been increased to the increased detection of non-relevant cerebrovascular lesions as MRI is a more sensitive diagnostic method [25]. Another limitation of this study is that the clinical diagnosis was performed retrospectively, however, the panel of neurologists was blinded to neuropathological findings. Last but not least, the neuropathological examinations were only performed on the right hemisphere, and the fact that neuropathology is only a relative gold standard, could be seen as limitations of this study.

In conclusion, patients with vascular lesions on structural brain imaging were often misdiagnosed as possible or probable VaD as compared to the autopsy-confirmed diagnosis. The majority of these subjects were neuropathologically diagnosed with other dementia types than VaD.

ACKNOWLEDGMENTS

This research was in part supported by the University Research Fund of the University of Antwerp; the Institute Born-Bunge; the central Biobank facility of the Institute Born-Bunge/University Antwerp; the Foundation for Alzheimer Research (SAO-FRA); Neurosearch Antwerp; the Research Foundation - Flanders (FWO); the Agency for Innovation by Science and Technology (IWT); the Interuniversity Attraction Poles (IAP) programme of the Belgian Science Policy Office; the Flemish Government Methusalem excellence program, Belgium. This work is part of the BIOMARKAPD project within the EU Joint Program for Neurodegenerative Disease Research (JPND). This work has received support from the EU / EFPIA Innovative Medicines Initiative Joint Undertaking (EMIF grant no 115372).

The authors acknowledge the administrative and the clinical staff of the Department of Neurology and Memory Clinic of Hospital Network Antwerp, Middelheim and Hoge Beuken, Antwerp, Belgium. Authors’ disclosures available online (http://j-alz.com/manuscript-disclosures/14-2103r2).

REFERENCES

