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Abstract

The increased trading in multi-name financial products has required the development of state-
of-the-art multivariate models. These models should be computationally tractable and, at the
same time, flexible enough to explain the stylized facts of asset log-returns and of their depen-
dence structure. The popular class of multivariate Lévy models provides a variety of tractable
models, but suffers from one major shortcoming: Lévy models can replicate single-name deriva-
tive prices for a given time-to-maturity, but not for the whole range of quoted strikes and matu-
rities, especially during periods of market turmoil. Moreover, there is a significant discrepancy
between the moment term structure of Lévy models and the one observed in the market. Sato
processes on the other hand exhibit a moment term structure that is more in line with empir-
ical evidence and allow for a better replication of single-name option price surfaces. In this
paper, we propose a general framework for multivariate models characterized by independent
and time-inhomogeneous increments, where the asset log-return processes at unit time are mod-
eled as linear combinations of independent self-decomposable random variables, where at least
one self-decomposable random variable is shared by all the assets. As examples, we consider
two general subclasses within this new framework, where we assume a normal variance-mean
mixture with a one-sided tempered stable mixing density or a difference of one-sided tempered
stable laws for the distribution of the risk factors. Particular attention is given to the models’
ability to explain the asset dependence structure. A numerical study reveals the advantages of
these new types of models.

Keywords: multivariate asset pricing models, Sato processes, space-scaled self-decomposable laws,
calibration

1 Introduction

The ever-growing demand for basket structured products has stimulated the search for and the
development of more realistic multivariate asset pricing models. These multivariate financial mod-
els should be at once computationally tractable and flexible enough to replicate the stylized facts
of both single-name asset log-returns and their dependence structure, and this whatever the level
of market fear. Although many alternatives to the univariate Black-Scholes model have been sug-
gested over the past twenty years to model single-name asset prices, so far only a few extensions
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have been proposed in the multivariate setting, most of them being characterized by Lévy marginal
processes. Among these ones, we can distinguish two broad classes of models, based on the way
dependence between single-name assets is introduced. In the first category, dependence is achieved
by subordinating a multivariate Brownian motion by a linear combination of subordinators, among
which at least one is common to all single-name assets. For example, in the multivariate VG model
of Madan and Seneta [30], which was later extended by Luciano and Schoutens [27] to incorporate
skewness, the multivariate Brownian motion is subordinated by a univariate Gamma distributed
time-change. However, due to the uniqueness of the business clock, this multivariate VG model
does not allow for independence of the asset log-returns. Hence, Semeraro proposed the αVG model
as an extention, where the business clock is modeled as a multivariate subordinator constructed as
the weighted sum of two independent Gamma processes with the same shape parameters. Relax-
ing the constraints on the Gamma subordinators leads to the Generalized αVG model proposed
by Guillaume [16], where the marginals are still Lévy but no longer VG distributed. Due to this
modification, the volatility of the asset log-returns, as opposed to the volatility under the original
αVG model, depends on both the common and the idiosyncratic risk factors, which is more in line
with the empirical evidence of the existence of a common as well as an individual business clock
(see [19] and [26]). Other examples of multivariate models within this model class can be found in
e.g. [28] or [35]. In the second class, dependence is introduced by considering linear combinations of
independent univariate Lévy processes, among which at least one is a driving factor of each under-
lying asset composing the pool. This factor approach was introduced by Vasicek [38] for Brownian
motions and was later adopted to the case of Lévy processes, for example in [20] and [31]. A
general framework for this class of Lévy models was recently developed by Ballotta and Bonfiglioli
[2], where they assume each single-name asset log-return to be driven by a linear combination of
one systemic and one idiosyncratic risk factor. Whereas Ballotta and Bonfiglioli considered only
one systemic risk factor, Marfé [32] elaborated a multivariate Lévy framework where each asset
log-return is driven by a linear combination of one idiosyncratic component and multiple systemic
risk factors. The dependence in positive and negative jumps is modeled separately, which allows for
a higher flexibility in capturing non-linear dependence structures. Note that in both model classes
dependence is introduced by considering marginal asset log-return processes that are driven by at
least one common Lévy process, which is required since, unlike Brownian motions which are always
active, independent pure jump Lévy processes are active at a disjoint set of times [12].

Although Lévy models, unlike the Black-Scholes model, can accommodate the empirical evidence
of leptokurtosis, of semi-heavy tails and of the presence of jumps in asset log-returns, they typically
fail to explain option prices across both the strike and the time-to-maturity spectra. Such discrep-
ancy with the market reality typically occurs during periods of financial distress, such as the global
financial crisis of 2008, as highlighted by Guillaume (see [15] and [16]). Moreover, Konikov and
Madan [21] empirically determined the moment term structures of asset log-returns and observed
a significant mismatch with the moment term structures of the Lévy processes. Sato processes on
the other hand, which are processes with time-inhomogeneous increments, exhibit moment term
structures that are more in line with market observations. Moreover, they are better able at repro-
ducing quoted option prices across both the strike and time-to-maturity dimensions, as illustrated
in, for example, [7], [10] and [15].

In this paper, we propose a general framework for linearly dependent multivariate models char-
acterized by independent and time-inhomogeneous increments. The asset log-return processes at
unit time are modeled as linear combinations of independent self-decomposable random variables,
leading to multivariate models with Sato marginal processes, since self-decomposability is preserved
under convolution. Dependence between the asset log-returns is introduced by considering for each
asset an idiosyncratic and a systemic risk factor. Both positive and negative correlations can be
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accommodated by assigning positive or negative weights to the common driving factor. The pro-
posed approach can be seen as an adaptation of the Lévy framework developed in [2], where the
time-homogeneous increment property is relaxed. Given the ability of Sato models to explain single-
name option prices across both the strike and the time-to-maturity dimensions, this adjustment is
expected to improve the goodness of fit of the single-name option price surfaces when compared
to multivariate Lévy models. Besides, due to its more flexible correlation structure, the proposed
model class will constitute a suitable alternative to the multivariate Sato model built by time-
changing a multivariate Brownian motion as proposed in [15]. As examples, we consider normal
variance-mean mixtures with a one-sided tempered stable mixing density and differences of one-
sided tempered stable laws for the distribution of the risk factors. A numerical study reveals the
advantages of this new type of multivariate models.

The paper is organized as follows: Sections 2 and 3 recall the fundamental properties of Lévy
and Sato processes, respectively. The general model framework is given in Section 4, where we
elaborate some specific multivariate models as well by choosing popular self-decomposable distri-
butions for the risk factors. The calibration procedure is discussed in Section 5, together with
the calibration instruments used to calibrate the univariate option surfaces and the dependence
structure. Section 6 compares the dependence structure of the multivariate linear VG Lévy and
Sato models to the one of the αVG Lévy and Sato models proposed in [15] and [16], whereas the
calibration results are discussed in Section 7. Section 8 concludes.

2 Lévy processes

A Lévy process is a stochastic process X = {Xt, t ≥ 0} defined on a probability space (Ω,F ,P),
with the following properties (see [24]):

� The paths of X are P-almost surely càdlàg;

� X0 = 0 P-almost surely;

� For 0 ≤ s ≤ t, it holds that Xt −Xs
d
= Xt−s;

� For 0 ≤ s ≤ t, Xt −Xs is independent of {Xu : u < s}.

The last two conditions imply that Lévy processes have stationary and independent increments.
Lévy processes are the dynamic counterpart of infinitely divisible distributions, i.e. if X is a Lévy
process, then Xt has an infinitely divisible distribution ∀t ≥ 0 and conversely, for any infinitely
divisible law L, we can define a Lévy process X = {Xt, t ≥ 0} such that X1 ∼ L.

Definition 1. The distribution of a random variable X is infinitely divisible if, for every integer
n, the characteristic function φ(u) = E[exp(iuX)] of X can be written as the nth power of a
characteristic function φn(u): φ(u) = (φn(u))n.

The Lévy-Khintchine representation characterizes infinitely divisible distributions, and thus Lévy
processes, in terms of their characteristic exponent ΨX(u) = ln(φX(u)):

Definition 2. The characteristic exponent of any infinitely divisible distribution can be written in
terms of the Lévy-Khintchine representation:

ΨX(u) = iγu− σ2

2
u2 +

∫
R

(exp(iux)− 1− iux1|x|<1)ν(dx), u ∈ R,
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where γ ∈ R is called the drift and σ ≥ 0 the diffusion coefficient. ν is a measure concentrated on
R \ {0} such that

∫
R min(1, |x|2)ν(dx) <∞ and is called the Lévy measure.

A Lévy process is uniquely defined by its Lévy triplet (γ, σ, ν). A detailed overview of Lévy processes
can be found, for instance, in [11], [33] or [35].

3 Sato processes

Sato processes are closely linked to the class of self-decomposable distributions.

Definition 3. A random variable X has a self-decomposable law if, for any constant c, 0 < c < 1,
X has the same probability law as the sum of a down-scaled version of itself and an independent
random variable Xc:

X
d
= cX +Xc. (3.1)

Self-decomposable distributions are infinitely divisible distributions with a Lévy-Khintchine repre-
sentation of the form (see [24]):

ΨX(u) = iγu− σ2

2
u2 +

∫
R

(
exp(iux)− 1− iux1|x|<1

) h(x)

|x|
dx, u ∈ R, (3.2)

where h(x) ≥ 0 is a function that is decreasing for positive x and increasing for negative x.

A Sato process can be constructed from any self-decomposable distribution: the law of Xt is
obtained by space-scaling the law of a self-decomposable random variable X (see [10]):

Xt
d
= tγX,

where γ is called the self-similar exponent. Sato processes are thus defined as self-similar processes
with a self-decomposable law at unit time. It can be shown that a Sato process is additive (for
a proof, see [10]). Hence, Sato processes have independent, but time-inhomogeneous increments.
One can easily check that, for a Sato process X = {Xt, t ≥ 0}, it holds that Var[Xt] = t2γVar[X]
and that the skewness and kurtosis are constant over the term. In general, we have:

µn[Xt] = µn[X], n > 2,

where µn is the nth standardized moment. Consequently, Sato processes have moment term struc-
tures that are more consistent with the market implied moment term structures than Lévy processes.
Indeed, Konikov and Madan [21] empirically showed that the skewness (in absolute value) and the
kurtosis of market asset log-returns are constant or rise slightly over the term, while they scale like
1/
√
t and 1/t, respectively, for Lévy processes.

The following theorem implies that we can build new Sato processes based on any linear com-
bination of independent self-decomposable random variables and will be used to build multivariate
linear factor models with marginal Sato processes:

Theorem 1. Let X and Z be independent self-decomposable random variables with Lévy triplet

(γX , σX , νX) and (γZ , σZ , νZ), respectively, where νX(dx) = h1(x)
|x| dx and νZ(dx) = h2(x)

|x| dx. Then

Y = X+aZ, a ∈ R\{0} is again a self-decomposable random variable with Lévy triplet (γY , σY , νY ),
where
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� γY = γX + aγZ +
∫
R
(
x
(
1{|x|<1} − 1{|x|<|a|}

)) h2( xa )

|x| dx,

� σ2
Y = σ2

X + a2σ2
Z ,

� νY (dx) =
(
h1(x)+h2( xa )

|x|

)
dx.

Proof. See Appendix A.

For additional information about Sato processes, we refer the reader to [33].

4 Multivariate models built as linear combinations of Lévy
and Sato processes

4.1 General Lévy framework

Ballotta and Bonfiglioli [2] propose a class of multivariate Lévy models with dependent marginals,
built as linear combinations of independent Lévy processes. In their approach, dependence is intro-
duced by considering for each asset an idiosyncratic and a systemic risk factor. We shortly revisit
the construction and properties of this class of multivariate Lévy models and refer the reader to [2]
for further details.

Let Z = {Zt, t ≥ 0} and X(j) = {X(j)
t , t ≥ 0}, j = 1, . . . , n be independent Lévy processes.

Then for aj ∈ R \ {0}, the process Y = {Yt, t ≥ 0} with

Yt = (Y
(1)
t , . . . , Y

(n)
t )′ = (X

(1)
t + a1Zt , . . . , X

(n)
t + anZt)

′ (4.1)

is a multivariate Lévy process with characteristic function

φY(u; t) = φZ

 n∑
j=1

ajuj ; t

 n∏
j=1

φX(j)(uj ; t), u ∈ Rn. (4.2)

Since dependence is introduced linearly, the pairwise linear correlation coefficient ρ correctly de-
scribes the dependence between components of the multivariate Lévy process Y at time t and is
given by (see [2]):

ρ
(
Y

(i)
t , Y

(j)
t

)
=

aiajVar[Z1]√
Var

[
Y

(i)
1

]√
Var

[
Y

(j)
1

] . (4.3)

4.2 General Sato framework

The model (4.1) can be adapted to model asset log-returns with time-inhomogeneous increments
provided that the marginal distributions of Y1 are self-decomposable. Theorem 1 implies that

if X
(j)
1 , j = 1, . . . , n and Z1 are chosen to be self-decomposable random variables, then Y1 has

self-decomposable marginals as well. In that case, we can construct a multivariate Sato model by
assuming that the n-dimensional asset log-return is modeled by

Yt
d
= tγY = (tγ1Y (1), . . . , tγnY (n))′ = (tγ1X(1) + a1t

γ1Z, . . . , tγnX(n) + ant
γnZ)′. (4.4)
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The characteristic function of Yt is then given by

φY(u; t) = φY(utγ ; 1) = φZ

 n∑
j=1

ajujt
γj ; 1

 n∏
j=1

φX(j)(ujt
γj ; 1), u ∈ Rn. (4.5)

The pairwise linear correlation coefficient is given by (4.3) and correctly describes the dependence
between the components of the multivariate Sato model. Besides, the term structure of the stan-
dardized co-moments of any multivariate process with Sato marginals, X = {Xt, t ≥ 0} is flat,

which follows from combining the fact that X
(j)
t

d
= tγjX

(j)
1 and the definition of the (m,n)-th

standardized co-moment of two random variables X and Y :

µm,n(X,Y ) =
E [(X − E[X])

m
(Y − E[Y ])

n
](√

Var[X]
)m (√

Var[Y ]
)n , m, n ≥ 0.

This contrasts with the term structure of the standardized co-moments of order {(m,n),m+n > 2}
of multivariate Lévy processes, which are decreasing over the term. In particular, the co-skewness
of a Lévy process X = {Xt, t ≥ 0} scales like 1/

√
t and the excess of co-kurtosis like 1/t. A sketch

of the proof is given in Appendix B. Note that, in both general frameworks (i.e. Lévy and Sato),
one can impose conditions on the parameters of X1 and Z1 to guarantee that Y1 belongs to the
same class of distributions. Such a restriction is sometimes imposed to increase the tractability of
the model (see, f.i., [2], [36] or [28]).

We now discuss popular examples of self-decomposable laws, namely one-sided tempered stable
distributions and normal variance-mean mixtures with a one-sided tempered stable mixing density.
We will use such distributions to build specific multivariate Sato option pricing models in Section
4.4 and 4.5, respectively.

4.3 One-sided tempered stable distributions

This section recalls the basic properties of one-sided tempered stable distributions. For more infor-
mation on tempered stable distributions, we refer the reader to [23].

A random variable G is said to follow a one-sided tempered stable distribution, denoted G ∼
TS(C,α, λ), with parameters C ∈ (0,∞), λ ∈ (0,∞) and α ∈ [0, 1), if it has a characteristic
function of the following form:

φG(u) = exp

(∫
R

(exp(iux)− 1)ν(dx)

)
, u ∈ R, (4.6)

where the Lévy measure ν is given by:

ν(dx) =
C

x1+α
e−λx1(0,∞)(x)dx. (4.7)

The characteristic function (4.6) can be rewritten for α ∈ (0, 1) as (see [23]):

φG(u) = exp (CΓ(−α)[(λ− iu)α − λα])

= exp

(
CΓ(−α)λα

[(
1− iu

λ

)α
− 1

])
, u ∈ R,
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where Γ denotes the Gamma function. The cumulants of a one-sided tempered stable distribution
are given by (see [23]):

κn = Γ(n− α)
C

λn−α
, n ∈ N.

From the Lévy measure (4.7), we have that ν(dx) = h(x)
|x| dx where

h(x) =

{
0 x ≤ 0,

Ce−λxx−α x > 0.
(4.8)

It follows that the one-sided tempered stable distribution is self-decomposable. Hence, one can
build Sato processes with a one-sided tempered stable distribution at unit time. Further, since
one-sided tempered stable distributions are infinitely divisible and concentrated on the positive real
line, one can build (zero-drift) subordinators with a TS(C,α, λ) law at unit time.

Definition 4. If, in the Lévy-Khintchine representation of an infinitely divisible random variable
X, we have that σ = 0, ν(−∞, 0) = 0,

∫
|x|<1

|x|ν(dx) <∞ and

ΨX(u) = iγ0u+

∫
R+

(exp(iux)− 1)ν(dx), u ∈ R,

where γ0 ≥ 0, then {Xt, t ≥ 0} is a subordinator, i.e. a non-decreasing Lévy process.

Subordinators are not suited to model asset log-returns, since they are non-decreasing. However,
subordinators are frequently used to time-change other Lévy processes, such as Brownian motions,
where the deterministic calendar time is replaced by some business time, such that the arrival of new
information occurs according to a stochastic business clock (see e.g. [1], [30] and [36]). In particular,
when the subordinator is associated to a one-sided tempered stable distribution, the subordinated
Brownian motion at unit time follows a normal variance-mean mixture with a one-sided tempered
stable mixing density, which will be called a normal tempered stable distribution from now on.
Alternatively, single-name asset log-returns at unit time can be modeled by the difference of two
self-decomposable random variables such that the log-price gains and losses are modeled separately.

4.4 Normal tempered stable distributions

A random variable X follows a normal tempered stable distribution (i.e. a normal variance-mean
mixture with a one-sided tempered stable distribution as mixing density) if

X = θG+ σ
√
GB,

where θ ∈ R, σ > 0, G ∼ TS(C,α, λ) and where B ∼ N(0, 1) is independent of G (see [3]). The
characteristic function of the random variable X is then given by:

φX(u) = eΨG(uθ+iu2σ2/2), u ∈ R, (4.9)

where

ΨG(u) = CΓ(−α)λα
[(

1− iu

λ

)α
− 1

]
, u ∈ R. (4.10)
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Combining (4.9) and (4.10), the characteristic function of X is given by:

φX(u) = exp

(
CΓ(−α)λα

[(
1− iuθ

λ
+
u2σ2

2λ

)α
− 1

])
, u ∈ R. (4.11)

The Lévy process associated to X is then a normal tempered stable process, i.e. X = {Xt, t ≥ 0}
is constructed as a Brownian motion with drift time-changed by a one-sided tempered stable sub-
ordinator G = {Gt, t ≥ 0} independent of the standard Brownian motion B = {Bt, t ≥ 0} (see for
example [23] for the use of normal tempered stable processes in finance). The Lévy triplet of the
normal tempered stable distribution is given by:

Theorem 2. Let X = {Xt, t ≥ 0} be a Lévy process on R with Lévy triplet (γX , σX , νX) and
Z = {Zt, t ≥ 0} be a subordinator with Lévy triplet (γZ , 0, νZ). Then the Lévy triplet of the
subordinated Lévy process Y = {Yt, t ≥ 0} arising from them, i.e. Yt = XZt , is given by:

� γY = γZγX +
∫
R+ νZ(dt)

∫
|x|<1

xµt(dx),

� σY = γZσX ,

� νY (B) = γZνX(B) +
∫
R+ µ

t(B)νZ(dt), B ∈ B(R \ {0}),

where µt is the probability density function of Xt.

Proof. For a proof, we refer the reader to [33].

Hence, since the Lévy triplet of a Brownian motion with drift θ is given by (θ, σ, 0) and the Lévy
triplet of a one-sided tempered stable distribution by (

∫
|x|<1

xν(dx), 0, ν), with ν as in (4.7), the

Lévy measure ν̃ of the normal tempered stable distribution becomes:

ν̃(x) =
C

σ
√

2π

∫
R+

e−
(x−θt)2

2σ2t
−λt

tα+3/2
dt, x ∈ R \ {0}. (4.12)

Using the following representation of the modified Bessel function of the second kind (see 8.432.6
in [14]):

Kp(y) =
1

2

(y
2

)p ∫
R+

e−t−
y2

4t t−p−1dt, y > 0, p ∈ R,

we can rewrite (4.12) as:

ν̃(x) =
2C

σ
√

2π
e
θx
σ2

(√
θ2 + 2σ2λ

|x|

)α+ 1
2

Kα+ 1
2

(
|x|
√
θ2 + 2σ2λ

σ2

)
, x ∈ R \ {0}. (4.13)

In what follows, whenever we are working with a normal tempered stable distribution, we impose

E[G] = 1, leading to C = λ1−α

Γ(1−α) . This restriction makes sure that the subordinator associated to

G increases on average as the calendar time t. The characteristic exponent of G1 then reduces to

ΨG1(u) =
−λ
α

[(
1− iu

λ

)α
− 1

]
, u ∈ R, (4.14)

and the characteristic function of X1 to

φX1
(u) = exp

(
−λ
α

[(
1− iuθ

λ
+
u2σ2

2λ

)α
− 1

])
, u ∈ R. (4.15)
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The parameter α ∈ [0, 1) is called the stability parameter and k := 1−α
λ the variance rate, since

Var[Gt] =
1− α
λ

t = kt.

We will denote X ∼ NTS(α, σ, k, θ) if X is a normal tempered stable random variable with a

TS
(

λ1−α

Γ(1−α) , α, λ
)

mixing density.

The NTS(α, σ, k, θ) law satisfies the following properties:

� Time-scaling property: X1 ∼ NTS(α, σ, k, θ) ⇒ Xt ∼ NTS(α,
√
tσ, kt , tθ),

� Space-scaling property: X1 ∼ NTS(α, σ, k, θ) ⇒ cX1 ∼ NTS(α, cσ, k, cθ),

for t ≥ 0 and c > 0.

By the following theorem, which is stated and proved in [34], the normal tempered stable dis-
tribution is self-decomposable by construction.

Theorem 3 (Sato). Let {Wt, t ≥ 0} be a Brownian motion with drift and let {Gt, t ≥ 0} be a
self-decomposable subordinator. Then the subordinated process {Xt, t ≥ 0} arising from them is
self-decomposable.

Proof. For the proof we refer the reader to [34].

Hence, one can construct a multivariate Sato model of the form (4.4) based on the NTS(α, σ, k, θ)
distribution.

Definition 5. We define the class of multivariate linear normal tempered stable Sato models by con-

sidering X
(j)
1 , j = 1, . . . , n and Z1 in (4.4), to be independent normal tempered stable distributions,

i.e. X
(j)
1 ∼ NTS(α, σj , kj , θj), j = 1, . . . , n and Z1 ∼ NTS(α, σZ , kZ , θZ)1.

The characteristic function (4.5) of Yt then becomes:

φY(u; t) = exp

 (α− 1)

αkZ


1−

i
(∑n

j=1 ajujt
γj
)
θZkZ

1− α
+

(∑n
j=1 ajujt

γj
)2

σ2
ZkZ

2(1− α)


α

− 1




×
n∏
j=1

exp

(
(α− 1)

αkj

[(
1− iujt

γjθjkj
1− α

+
u2
j t

2γjσ2
jkj

2(1− α)

)α
− 1

])
, u ∈ Rn.

Consequently, the marginal characteristic function of Y
(j)
t , j = 1, . . . , n is given by:

φY (j)(u; t) = exp

(
(α− 1)

αkZ

[(
1− iajut

γjθZkZ
1− α

+
a2
ju

2t2γjσ2
ZkZ

2(1− α)

)α
− 1

])

× exp

(
(α− 1)

αkj

[(
1− iujt

γjθjkj
1− α

+
u2
j t

2γjσ2
jkj

2(1− α)

)α
− 1

])
, u ∈ R.

1Note that we assume the same α for X
(j)
1 , j = 1, . . . , n and Z1 in order to have idiosyncratic and systemic risk

factors that belong to the same sub-class of normal tempered stable distributions. Note that this restriction can be
relaxed to enhance the flexibility of the model, at the cost of a decrease of its parsimony.
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Similarly, we can define the class of multivariate linear normal tempered stable Lévy models by

considering X(j) = {X(j)
t , t ≥ 0}, j = 1, . . . , n and Z = {Zt, t ≥ 0} in (4.1) to be independent

normal tempered stable processes. The characteristic function (4.2) of Yt is then given by:

φY(u; t) = exp

 t(α− 1)

αkZ


1−

i
(∑n

j=1 ajuj

)
θZkZ

1− α
+

(∑n
j=1 ajuj

)2

σ2
ZkZ

2(1− α)


α

− 1




×
n∏
j=1

exp

(
t(α− 1)

αkj

[(
1− iujθjkj

1− α
+

u2
jσ

2
jkj

2(1− α)

)α
− 1

])
, u ∈ Rn,

with marginal characteristic functions:

φY (j)(u; t) = exp

(
t(α− 1)

αkZ

[(
1− iajuθZkZ

1− α
+
a2
ju

2σ2
ZkZ

2(1− α)

)α
− 1

])

× exp

(
t(α− 1)

αkj

[(
1− iujθjkj

1− α
+

u2
jσ

2
jkj

2(1− α)

)α
− 1

])
, u ∈ R.

In multivariate models, the distribution of the asset log-returns is often restricted to be from the
same family of distributions as the one of the underlying risk factors (see, f.i., [2], [28] or [36]). This
can be achieved by imposing conditions on the idiosyncratic and the common parameters. In the
case of normal tempered stable distributed risk factors, imposing the following conditions (4.16) on

the parameters of X
(j)
1 , j = 1, . . . , n and Z1 ensures that Y

(j)
1 , j = 1, . . . , n are normal tempered

stable random variables as well, in both the Lévy and the Sato settings, leading to a restricted
model: {

kZajθZ = kjθj , j = 1, . . . , n,

kZa
2
jσ

2
Z = kjσ

2
j , j = 1, . . . , n.

(4.16)

With these conditions, Y
(j)
1 follows a NTS(α, σ̃j , k̃j , θ̃j) = NTS(α, ajσZ

√
kZ+kj
kj

,
kjkZ
kj+kZ

, ajθZ
kj+kZ
kj

)

distribution, where, due to the conditions (4.16), it must hold that

σ̃2
j

θ̃2
j k̃j

=
σ2
Z

kZθZ
= c, ∀j = 1, . . . , n, (4.17)

for some c > 0. In what follows, we will scale the parameter σZ to 1 without loss of generality.
Indeed, due to the space-scaling property of the NTS(α, σ, k, θ) distribution, multiplying aj by a
constant b and dividing σZ and θZ by b will not change the distribution of Yt.

4.4.1 Some specific examples

Different values of the stability parameter α result in different sub-classes of distributions for

X
(j)
1 , j = 1, . . . , n and Z1 in Definition 5. In particular, the density function of the normal tempered

stable distribution is known in explicit form for α = 0 and α = 1
2 . With α = 0, the NTS(α, σ, k, θ)

distribution reduces to the variance gamma VG(σ, k, θ) distribution and taking α = 1
2 leads to the

10



normal inverse Gaussian NIG(σ, k, θ) law (see [11]). The VG(σ, k, θ) distribution has characteristic
function

φVG(u;σ, k, θ) =

(
1− iuθk +

u2σ2k

2

)−1/k

, u ∈ R, (4.18)

and the characteristic function of the NIG(σ, k, θ) distribution is given by:

φNIG(u;σ, k, θ) = exp

(
1

k

(
1−

√
1− 2iuθk + u2σ2k

))
, u ∈ R. (4.19)

The first four moments of the VG and the NIG distributions are given in Table 1.

VG(σ, k, θ) NIG(σ, k, θ)

mean θ θ

variance σ2 + kθ2 σ2 + kθ2

skewness
θk
(
3σ2 + 2kθ2

)
(σ2 + kθ2)

3/2

3kθ√
σ2 + kθ2

kurtosis 3

(
1 + 2k − kσ4

(σ2 + kθ2)
2

)
3

(
1 + 5k − 4kσ2

σ2 + kθ2

)
Table 1: Moments of the VG and the NIG distribution

.

Taking X
(j)
1 and Z1 in (4.4) to be VG distributed, we obtain a multivariate linear VG Sato model.

The joint characteristic function of Yt is then given by:

φY(u; t) =

1− i

 n∑
j=1

ajujt
γj

 θZkZ +

(∑n
j=1 ajujt

γj
)2

σ2
ZkZ

2


−1
kZ

×
n∏
j=1

(
1− iujt

γjθjkj +
u2
j t

2γjσ2
jkj

2

)−1
kj

, u ∈ Rn.

The corresponding multivariate linear VG Lévy process has characteristic function:

φY(u; t) =

1− i

(
n∑
j=1

ajuj

)
θZkZ +

(∑n
j=1 ajuj

)2
σ2
ZkZ

2


−t
kZ

n∏
j=1

(
1− iujθjkj +

u2
jσ

2
jkj

2

)−t
kj

, u ∈ Rn,

and the correlation coefficient (4.3) becomes:

ρ
(
Y

(i)
t , Y

(j)
t

)
=

aiaj
(
σ2
Z + kZθ

2
Z

)√
σ2
i + kiθ2

i + a2
i (σ2

Z + kZθ2
Z)
√
σ2
j + kjθ2

j + a2
j (σ2

Z + kZθ2
Z)
.

11



Imposing the conditions (4.16), we obtain a restricted model setting where the marginals Y
(j)
1 , j =

1, . . . , n follow a VG(ajσZ

√
kZ+kj
kj

,
kjkZ
kj+kZ

, ajθZ
kj+kZ
kj

) distribution. Making the change of variables:

σ̃j = ajσZ

√
kZ + kj
kj

, k̃j =,
kjkZ
kj + kZ

and θ̃j = ajθZ
kj + kZ
kj

, (4.20)

leads to marginal characteristic functions that are independent of the parameters of the common
risk factor Z (i.e. σZ , kZ and θZ):

φY (j)(u; t) =

(
1− iuθ̃j k̃j +

1

2
u2σ̃2

j k̃j

)−t/k̃j
, u ∈ R, (4.21)

and

φY (j)(u; t) =

(
1− iutγj θ̃j k̃j +

1

2
u2t2γj σ̃2

j k̃j

)−1/k̃j

, u ∈ R, (4.22)

under the restricted multivariate linear VG Lévy and the restricted multivariate linear VG Sato
models, respectively. The correlation coefficient then reduces to

ρ
(
Y

(i)
t , Y

(j)
t

)
= sign(θ̃iθ̃j)

√
k̃ik̃j

kZ
∝ 1

kZ
. (4.23)

Note that in order for σ̃j to be positive, it must hold that aj > 0, ∀j = 1, . . . , n and the dependence

is therefore restricted to be positive. Indeed, with aj > 0 the sign of θ̃iθ̃j must be +1 due to
(4.20). Despite this limitation, the constraints (4.20) allow to perform the decoupling calibration
procedure proposed by Leoni and Schoutens [25], where the calibration of the single-name option
price surfaces is decoupled from the calibration of the dependence structure. This calibration tech-
nique should be used whenever possible, since it leads to a significant decrease in computation time
and it reduces the probability to end up in a “bad” local minimum due to the splitting of the
parameter space into subspaces. Note that for the present class of models, due to the restriction
(4.17), the idiosyncratic parameters have to be calibrated together, which is, besides the positive
correlation, the main drawback of this particular model. In Section 4.5.1 we propose an alterna-
tive model where one can take full advantage of the benefits of the decoupling calibration procedure.

One can construct multivariate models based on the NIG distribution in a similar manner, where
the characteristic function of Yt is then obtained by combining (4.19) and (4.2) or (4.5), to end up
with a multivariate Lévy or Sato process, respectively.

Instead of modeling the idiosyncratic and systemic risk factors by a normal tempered stable distri-
bution, we can decompose each of them into a positive (favorable) and a negative (unfavorable) risk
factor, each being modeled by a one-sided tempered stable random variable, leading to a difference
of one-sided tempered stable distributions.

4.5 Difference of one-sided tempered stable distributions

A random variable X is said to follow a difference of one-sided tempered stable distributions if X =
G(1)−G(2), where G(1) ∼ TS(C1, α, λ1) and G(2) ∼ TS(C2, α, λ2) are independent (see for example
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[22] for the use of DTS distributions in finance). This will be denoted byX ∼ DTS(C1, C2, α, λ1, λ2).
The characteristic function of a DTS random variable X is given by:

φX(u) = φG(1)(u)φG(2)(−u)

= exp

(
C1Γ(−α)λα1

[(
1− iu

λ1

)α
− 1

])
exp

(
C2Γ(−α)λα2

[(
1 +

iu

λ2

)α
− 1

])
(4.24)

= exp

(
Γ(−α)

(
C1λ

α
1

[(
1− iu

λ1

)α
− 1

]
+ C2λ

α
2

[(
1 +

iu

λ2

)α
− 1

]))
, u ∈ R. (4.25)

From Theorem 1, it follows that the Lévy triplet of a DTS(C1, C2, α, λ1, λ2) distribution is given
by: (∫ 1

0

C1e
−λ1x − C2e

−λ2x

xα
dx, 0,

C1e
−λ1xx−α1(0,∞) + C2e

−λ2|x||x|−α1(−∞,0)

|x|
dx

)
.

The Lévy process associated to a DTS distribution is called a difference of one-sided tempered
stable subordinators or bilateral tempered stable process. The DTS(C1, C2, α, λ1, λ2) distribution
satisfies the following scaling properties:

� Time-scaling property: X1 ∼ DTS(C1, C2, α, λ1, λ2) ⇒ Xt ∼ DTS(tC1, tC2, α, λ1, λ2),

� Space-scaling property: X1 ∼ DTS(C1, C2, α, λ1, λ2) ⇒ cX ∼ DTS(C1

cα ,
C2

cα , α, cλ1, cλ2),

for t ≥ 0 and c > 0.

Theorem 1 implies that the DTS law is self-decomposable. Hence, we can construct a multivariate
Sato model of the form (4.4) based on the DTS distribution:

Definition 6. We define the class of multivariate linear DTS Sato models by considering X
(j)
1 , j =

1, . . . , n and Z1 in (4.4) to be independent DTS random variables, i.e. X
(j)
1 ∼ DTS(C1,j , C2,j , α, λ1,j , λ2,j),

j = 1, . . . , n and Z1 ∼ DTS(C1,Z , C2,Z , α, λ1,Z , λ2,Z)2.

In general, we have: {
X

(j)
1 = G

(1,j)
1 −G(2,j)

1 ,

Z1 = H
(1)
1 −H(2)

1 ,
(4.26)

whereG
(1,j)
1 ∼ TS(C1,j , α, λ1,j), G

(2,j)
1 ∼ TS(C2,j , α, λ2,j), for j = 1, . . . , n, H

(1)
1 ∼ TS(C1,Z , α, λ1,Z)

and H
(2)
1 ∼ TS(C2,Z , α, λ2,Z) are mutually independent. The characteristic function of the multi-

variate Sato process Yt is then given by combinating (4.5) and (4.24):

φY(u; t) = exp

C1,ZΓ(−α)λα1,Z

1−
i
(∑n

j=1 ajujt
γj
)

λ1,z

α

− 1


× exp

C2,ZΓ(−α)λα2,Z

1 +
i
(∑n

j=1 ajujt
γj
)

λ2,Z

α

− 1


×

n∏
j=1

exp

(
Γ(−α)

(
C1,jλ

α
1,j

[(
1− iujt

γj

λ1,j

)α
− 1

]
+ C2,jλ

α
2,j

[(
1 +

iujt
γj

λ2,j

)α
− 1

]))
, u ∈ Rn,

(4.27)

2Note that we assume the same α for X
(j)
1 , j = 1, . . . , n and Z1 in order to have idiosyncratic and systemic risk

factors that belong to the same sub-class of difference of one-sided tempered stable distributions. Note that this
restriction can be relaxed to enhance the flexibility of the model, at the cost of a decrease of its parsimony.
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with marginals

φY (j)(u; t) = exp

(
Γ(−α)

(
C1,Zλ

α
1,Z

[(
1− iajut

γj

λ1,Z

)α
− 1

]
+ C2,Zλ

α
2,Z

[(
1 +

iajut
γj

λ2,Z

)α
− 1

]))
× exp

(
Γ(−α)

(
C1,jλ

α
1,j

[(
1− iutγj

λ1,j

)α
− 1

]
+ C2,jλ

α
2,j

[(
1 +

iutγj

λ2,j

)α
− 1

]))
, u ∈ R.

(4.28)

Analogously, we can build a multivariate Lévy process of the form (4.1) where the risk factors at
unit time are DTS distributed. The characteristic function of Yt can be found by combining (4.2)
and (4.24):

φY(u; t) = exp

tC1,ZΓ(−α)λα1,Z

1−
i
(∑n

j=1 ajuj
)

λ1,Z

α

− 1


× exp

tC2,ZΓ(−α)λα2,Z

1 +
i
(∑n

j=1 ajuj
)

λ2,Z

α

− 1


×

n∏
j=1

exp

(
tΓ(−α)

(
C1,jλ

α
1,j

[(
1− iuj

λ1,j

)α
− 1

]
+ C2,jλ

α
2,j

[(
1 +

iuj
λ2,j

)α
− 1

]))
, u ∈ Rn,

(4.29)

with marginals

φY (j)(u; t) = exp

(
tΓ(−α)

(
C1,Zλ

α
1,Z

[(
1− iaju

λ1,Z

)α
− 1

]
+ C2,Zλ

α
2,Z

[(
1 +

iaju

λ2,Z

)α
− 1

]))
× exp

(
tΓ(−α)

(
C1,jλ

α
1,j

[(
1− iu

λ1,j

)α
− 1

]
+ C2,jλ

α
2,j

[(
1 +

iu

λ2,j

)α
− 1

]))
, u ∈ R.

(4.30)

As for the normal tempered stable model, we can ensure that Y
(j)
1 follows a DTS distribution as

well by imposing the following conditions on the parameters of X
(j)
1 and Z1:

aj =
λ1,Z

λ1,j
and aj =

λ2,Z

λ2,j
. (4.31)

We then have that Y
(j)
1 follows a DTS(C̃1,j , C̃2,j , α, λ̃1,j , λ̃2,j) = DTS

(
C1,j +

(
λ1,Z

λ1,j

)α
C1,Z , C2,j+(

λ2,Z

λ2,j

)α
C2,Z , α, λ1,j , λ2,j

)
distribution, and only positive correlations are possible.

In what follows, we will scale the parameter λ1,Z to 1 without loss of generality. Indeed, by
the space-scaling property of the DTS distribution, scaling λ1,Z to 1 will not change the law of Yt.

4.5.1 Some specific examples

Popular examples of one-sided tempered stable distributions in financial applications are the inverse
Gaussian (IG) (α = 1

2 ) and the Gamma (α = 0) distributions, leading to a difference of IG and a
difference of Gamma distributions, respectively (see also [13] or [22] and [7] for the use of difference
of Gamma distributions in single-name and multi-name asset pricing models, respectively). The
characteristic function of a Gamma(C, λ) and of an IG(C, λ) distribution is given by:

φGamma(u;C, λ) =

(
1− iu

λ

)−C
, u ∈ R,
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and
φIG(u;C, λ) = e−2C

√
π(
√
λ−iu−

√
λ), u ∈ R,

respectively3. Table 2 presents the first four moments of the Gamma and the inverse Gaussian
distributions.

Gamma(C, λ) IG(C, λ)

mean
C

λ

√
πC√
λ

variance
C

λ2

√
πC

2λ3/2

skewness
2√
C

3
√

2C (πλ)
1/4

kurtosis 3

(
1 +

2

C

)
3

(
1 +

5

2C
√
πλ

)
Table 2: Moments of the Gamma and the IG distributions.

.

Hence, imposing α = 0 in (4.24) and substituting it in (4.5) leads to a linear multivariate difference
of Gamma Sato model with the following characteristic function for Yt:

φY(u, t) =

1−
i
n∑
j=1

ujajt
γj

λ1,Z


−C1,Z 1 +

i
n∑
j=1

ujajt
γj

λ2,Z


−C2,Z

n∏
j=1

((
1− iujt

γj

λ1,j

)−C1,j
(

1 +
iujt

γj

λ2,j

)−C2,j
)
, u ∈ Rn.

The corresponding Lévy model has a characteristic function of the following form:

φY(u, t) =

1−
i
n∑
j=1

ujaj

λ1,Z


−tC1,Z 1 +

i
n∑
j=1

ujaj

λ2,Z


−tC2,Z

n∏
j=1

((
1− iuj

λ1,j

)−C1,j
(

1 +
iuj
λ2,j

)−C2,j
)t

, u ∈ Rn.

In this case, the correlation (4.3) is given by:

ρ
(
Y

(i)
t , Y

(j)
t

)
=

aiaj

(
C1,Z

λ2
1,Z

+
C2,Z

λ2
2,Z

)
√

C1,i

λ2
1,i

+
C2,i

λ2
2,i

+ a2
i

(
C1,Z

λ2
1,Z

+
C2,Z

λ2
2,Z

)√
C1,j

λ2
1,j

+
C2,j

λ2
2,j

+ a2
j

(
C1,Z

λ2
1,Z

+
C2,Z

λ2
2,Z

) .
Imposing the conditions (4.31), we obtain a restricted model setting where the marginals follow a

difference of Gamma distributions. The charactertistic function of Y
(j)
t , j = 1, . . . , n then reduces

to:

φY (j)(u, t) =

(
1− iu

λ1,j

)−t(C1,Z+C1,j)(
1 +

iu

λ2,j

)−t(C2,Z+C2,j)

, u ∈ R

in the Lévy setting and to

φY (j)(u, t) =

(
1− iutγj

λ1,j

)−(C1,Z+C1,j)(
1 +

iutγj

λ2,j

)−(C2,Z+C2,j)

, u ∈ R

3Taking a =
√

2πC and b =
√

2λ leads to Barndorff-Nielsen’s [4] parametrization of the IG distribution.
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in the Sato setting. The correlation coefficient is then given by:

ρ
(
Y

(i)
t , Y

(j)
t

)
=

C1,Zλ2,iλ2,j + C2,Zλ1,iλ1,j√(
(C1,i + C1,Z)λ2

2,i + (C2,i + C2,Z)λ2
1,i

) (
(C1,j + C1,Z)λ2

2,j + (C2,j + C2,Z)λ2
1,j

) .
Setting C∗1,j = C1,Z+C1,j and C∗2,j = C2,Z+C2,j , j = 1, . . . , n, the marginal characteristic functions
become independent of the common parameters such that we can again decouple the calibration
of the option price surfaces and the correlation fitting. However, unlike under the restricted linear
normal tempered stable model described in Section 4.4, we can now calibrate the idiosyncratic
parameters corresponding to the different assets seperately. Indeed, the condition (4.31) is equiv-

alent to aj = 1
λ1,j

and
λ1,j

λ2,j
= c, ∀j = 1, . . . , n, for some c > 0, which can be further restricted to

λ1,j = λ2,j ,∀j = 1, . . . , n, allowing to calibrate the single-name option price surfaces separately.
The correlation coefficient then reduces to:

ρ
(
Y

(i)
t , Y

(j)
t

)
=

C1,Z + C2,Z√
C∗1,i + C∗2,i

√
C∗1,j + C∗2,j

, (4.32)

and can only take positive values. For more flexible dependence structures (i.e. that can accommo-
date both positive and negative correlations), one can consider the general framework (i.e. without
imposing (4.31)). However, one can then not resort to the decoupling calibration procedure, which
might lead to complex optimization problems due to the high dimensionality of the parameter space.

Remark 4.1. These reduced multivariate difference of Gamma Lévy and Sato models are similar to
the ∆-Gamma Lévy and Sato models proposed in [7], but with the extra condition on the difference
of Gamma models that

λ1,j

λ2,j
=
λ1,Z

λ2,Z
= aj ∀j = 1, . . . , n.

These restriced ∆-Gamma models thus fit in the general framework proposed in this paper as a
special case.

Similar expressions can be derived when we assume X
(j)
1 , j = 1, . . . , n and Z1 to follow a difference

of IG distributions.

5 Calibration

We calibrate the restricted linear multivariate VG and the restricted linear multivariate difference
of Gamma Lévy and Sato models on a total of 68 quoting days ranging between the fourth of
January 2007 and the 20th of October 2009, with biweekly quotes (i.e. every two weeks). This
period includes different levels of market fear, as indicated by the VIX in Figure 1, and hence
allows us to compare the model performance under different market regimes. We consider a basket
of three major stocks included in the Dow Jones Industrial Average (DJX), namely Microsoft Corp.
(MSFT), General Electric Co. (GE) and Pfizer Inc. (PFE). European option prices are extracted
from the quoted American option prices using the iterative Implied Binomial (iIB) tree approach
introduced by Tian [37]. To fit the dependence structure, we consider market implied correlations.
More precisely, we approximate the correlation between any pair of single-name linear returns by
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the Average Linear Return Correlation (ALRC) index with a time horizon of one year:

ρALRC(t) =

Var
(
St−S0

S0

)
−
∑n
j=1

(
w∗j
)2

Var

(
S

(j)
t −S

(j)
0

S
(j)
0

)
2
∑
j<k w

∗
jw
∗
k

√
Var

(
S

(j)
t −S

(j)
0

S
(j)
0

)√
Var

(
S

(k)
t −S

(k)
0

S
(k)
0

) ,

where w∗j =
S

(j)
0

S0
wj and where the variance of the linear returns is extracted from the single-name

Quoting day
04-Jan-2007 23-Jun-2007 10-Dec-2007 28-May-2008 14-Nov-2008 03-May-2009 20-Oct-2009

V
IX

0

20

40

60

80

100
VIX index

Figure 1: The evolution of the Volatility index (VIX)

option price surfaces and the index option price surface using the option payoff spanning formula
of Breeden and Litzenberger [8]. Here, wj denotes the weight corresponding to the jth stock in the

arithmetic market (i.e. S0 =
∑n
j=1 wjS

(j)
0 ). For a price-weighted index like the Dow Jones, wj = 1

δ ,
where δ is the index divisor. The correlation between the asset log-returns can subsequently be
approximated by using Taylor series expansions.

Whenever possible, we employ a decoupling calibration procedure. The idiosyncratic parameters
are first calibrated on the univariate option price surfaces by minimizing the following objective
function:

MRMSE =

n∑
j=1

RMSE(j)

n
=

n∑
j=1

 1

n

√√√√ 1

N (j)

N(j)∑
k=1

(
P

(j)
k − P̂ (j)

k

)2

 , (5.1)

where N (j) is the number of quoted option prices for stock j and P
(j)
k and P̂

(j)
k denote the kth

quoted option price and model option price of stock j, respectively. The model option prices are
computed using the Carr-Madan formula (see [6]). Recall that we have to impose

σ̃2
j

k̃j θ̃2
j

=
σ2
Z

kZθ2
Z

= c, ∀j = 1, . . . , n

for some c ∈ R \ {0} under the restricted linear normal tempered stable multivariate models and

λ1,j

λ2,j
=
λ1,Z

λ2,Z
= aj ∀j = 1, . . . , n
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Lévy setting Sato setting Decoupled?

linear NTS General 4n+ 3 5n+ 3 7

linear DTS General 5n+ 4 6n+ 4 7

linear VG
General 4n+ 2 5n+ 2 7

Restricted 2n+ 2 3n+ 2 3

linear DG
General 5n+ 3 6n+ 3 7

Restricted 3n+ 2 4n+ 2 3

Table 3: Number of model parameters in function of the number of assets n.

under the restricted linear DTS multivariate models. Once the idiosyncratic parameters are cali-
brated, we calibrate the systemic parameters to match the market implied correlations by minimiz-
ing the objective function

RMSEρ =

√√√√ 1
n2−n

2

n∑
j=1

∑
k>j

(ρjk − ρ̂jk)
2
, (5.2)

where ρjk and ρ̂jk denote the market implied and model correlations between the jth and kth
log-returns, respectively. Note that the conditions (4.16) and (4.31) imposed on the idiosyncratic
parameters to make the decoupled calibration feasible restrict the admissible values of the systemic
parameters, and hence the attainable values of the model correlation. However, the decoupling pro-
cedure should be used whenever leading to an accurate fit of the dependence structure. Otherwise,
one can perform a joint calibration, where all the parameters are calibrated at once by minimizing
an objective function of the following form:

MRMSEJ =

n∑
j=1

RMSE(j)

n
+ αρ

√√√√ 1
n2−n

2

n∑
j=1

∑
k>j

(ρjk − ρ̂jk)
2
,

as proposed by [16]4. Here, αρ ≥ 0 allows the user to specify the relative importance of the
correlation matching, where αρ = 0 indicates that correlation fitting is not a desired feature and
that the model is calibrated on the univariate option surfaces only, and where we take αρ = 1
throughout this paper. Table 3 summarizes the total number of parameters for each model in terms
of the number of assets n, together with an indication of whether the model can be calibrated using
the decoupling calibration procedure or not.

6 Comparison with existing multivariate models

Imposing the condition (4.17) on the αVG model of Semeraro [36] and the original αVG Sato model
proposed by Guillaume [15] leads to multivariate models that have the same marginal structure as

4Note that we omit MRMSE∗ here to ensure that we attach the same importance to the correlation fitting in the
Lévy and the Sato settings.
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the restricted multivariate Lévy and Sato linear VG models described in Section 4.4.1, but with
a different dependence structure. Under the αVG models, the asset log-returns at unit time are
modeled by a normal variance-mean mixture, where the mixing density is a weighted sum of a

common and an idiosyncratic Gamma random variable, i.e. Y
(j)
1 = θjG

(j)
1 + σj

√
G

(j)
1 W (j), j =

1, . . . , n, where G
(j)
1 = X

(j)
1 + αjZ1 with Z1 ∼ Gamma(c1, 1) and X

(j)
1 ∼ Gamma(aj , 1/αj), {θj ∈

R, σj > 0, c1 > 0, aj > 0, αj > 0, j = 1, . . . , n} independent Gamma random variables and
where W (j), j = 1, . . . , n are independent standard Brownian motions that are independent of
X(j), j = 1, . . . , n and Z. The joint characteristic function then takes the form (see [36] and [15],
respectively):

φY(u; t) =

1− i
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2
σ2
ju

2
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,u ∈ Rn

and
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))−aj
,u ∈ Rn

under the original αVG and αVG Sato models, respectively. We then have that G
(j)
1 ∼ Gamma(aj+

c1,
1
αj

) and the following condition makes sure that, in the Lévy setting, the business time increases

on average as the calendar time t:

aj =
1

αj
− c1.

The marginal characteristic function then reduces to:

φY (j)(u; t) =

(
1− iαjθju+

1

2
αjσ

2
ju

2

)−t/αj
, u ∈ R (6.1)

under the Lévy setting and to

φY (j)(u; t) =

(
1− iαjθjut

γj +
1

2
αjσ

2
ju

2t2γj
)−1/αj

, u ∈ R (6.2)

under the Sato setting and the correlation coefficient is given by (see [15]):

ρ
(
Y

(i)
t , Y

(j)
t

)
=

θiθjαiαj√
(σ2
i + θ2

i αi)
(
σ2
j + θ2

jαj
)c1. (6.3)

Comparing the marginal characteristic functions (6.1) and (6.2) with the characteristic function
of the restricted linear VG Lévy (4.21) and Sato (4.22) models, it is clear that we can write the
characteristic function of the αVG models in terms of the parametrization used in Section 4.4.1 by
taking θj = θ̃j , σj = σ̃j and αj = k̃j . As for the linear VG model, we impose

σ̃2
j

θ̃2
j k̃j

= c, ∀j = 1, . . . , n, (6.4)

such that we can compare the dependence structure under the two model settings (i.e. the restricted
αVG type models versus the restricted linear VG type models), since the marginals then coincide.
The correlation coefficient for the restricted αVG models then reduces to

ρ
(
Y

(i)
t , Y

(j)
t

)
= sign(θ̃iθ̃j)

√
k̃ik̃jc1

c+ 1
∝ c1,
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where again sign(θ̃iθ̃j) = +1, since we assume the marginals under the restricted αVG models to be
the same as under the restricted linear VG models. Note that if we perform a decoupled calibration
procedure, the constraint

c1 < min
j=1,...,n

(
1

k̃j

)
(6.5)

must hold under the αVG models to ensure the positivity of the idiosyncratic parameters aj =
1
k̃j
− c1,∀j = 1, . . . , n. Besides, the constraint

1

kZ
< min
j=1,...,n

(
1

k̃j

)
(6.6)

must hold under the restricted linear VG models to ensure the positivity of the idiosyncratic pa-
rameters kj = 1

k̃j
− 1

kZ
, j = 1, . . . , n. Hence, the upperbound on the common parameter (i.e. on c1

and 1/kZ) imposed by decoupling the calibration is the same under both the restricted αVG and
the restricted linear VG models, allowing for a comparison of the maximal attainable values of the
correlation coefficient (µmax

1,1 ), the coskewnesses (µmax
1,2 and µmax

2,1 ) and the excesses of co-kurtosis5

(Cmax
1,3 , Cmax

2,2 and Cmax
3,1 ). In particular, one can prove that ∀i 6= j (see Appendix C for the proof):
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where the superscript αVG or linVG indicates whether the restricted αVG or the restricted linear
VG models are considered. These results imply that, for given marginals (assuming that (6.4)
holds), the restricted linear VG models have a wider range of maximal attainable values for the
correlation, as well as for the co-skewness and the excess of co-kurtosis. Hence, they can capture a
broader range of linear and non-linear dependence structures than the restricted αVG models. It
follows that the upper bound ((6.5) or (6.6)) on the common parameter is expected to be reached
more often under the restricted αVG models than under the restricted linear VG models. Note
that a similar comparison of the ∆-Gamma models of [7] and of the αVG models can be found in
[17]. Again, provided that the assets are skewed in the same direction, the ∆-Gamma models allow
for a more flexible dependence structure than the αVG models. The same conclusions hold for the
αNIG and linear NIG models.

5The excesses of co-kurtosis can be written in terms of the standardized co-moments µm,n as follows:
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7 Calibration Results

As numerical study, we first calibrate the multivariate restricted αVG, restricted linear VG, original
αVG and the restricted linear DG Lévy and Sato models using the decoupling calibration procedure
described in Section 5.

7.1 Calibration of the marginals

The evolution of the MRMSE for the different models under consideration is shown in Figure 2.
As expected, the option price surface goodness of fit is the same for both the restricted linear and
the restricted αVG models, as the marginal characteristic functions are the same. The original
αVG models have a slightly lower MRMSE value, due to the relaxation of the constraint (6.4).
The restricted linear DG models have an option price surface goodness of fit that is comparable
to the models with VG marginals, although they have one extra degree of freedom per underlying.
Moreover, as expected from previous studies (see f.i. [7], [10], [15]), it is clear that the Sato models
outperform the Lévy models in terms of marginal goodness of fit, especially during periods of
market turmoil. This is further observed on Figure 3, where the option price surface goodness of fit
is shown for the GE stock for the 11th of December 2008 under the restricted linear VG and αVG
models in the Lévy (left) and the Sato (right) settings.

7.2 Calibration of the dependence structure

Figures 4 and 5 show the evolution of the correlation RMSE (i.e. RMSEρ) under the Lévy and
the Sato settings, respectively, while Figures 6 and 7 display the value of the common parameters
and their upper bound. Comparing the restricted linear VG models to the restricted αVG models
in terms of correlation fitting, one observes that the restricted linear VG models outperform the
restricted αVG models in both the Lévy and the Sato settings whenever the upper bound on c1 is
reached (under the restricted αVG models), which is in line with the theoretical results obtained
in Section 6. This is the case for 79.41% (respectively 61.76%) of the quoting days with an average
improvement6 of 49.71% (respectively 45.51%) in the Lévy (respectively Sato) setting. On the
other hand, when the upper bound on c1 is not reached, the correlation goodness of fit under
the restricted αVG models is approximately the same as under the restricted linear VG models7.
However, the values of RMSEρ are still considerably large (an average of 16% and 15% of the
maximal attainable value of the correlation RMSE8, under the linear VG Lévy and Sato models).
This can be explained by the too low number of common parameters (i.e. one) to match the
correlation coefficients between three pairs of assets at the same time.

The condition (6.4) was imposed on the αVG models to allow for a comparison of the dependence
structure under both construction methods, i.e. building multivariate models as a linear combina-
tion of Lévy and Sato processes versus building multivariate models by time-changing a multivariate
Brownian motion. For the sake of complete comparison, we also calibrated the original αVG Lévy
and Sato models using the decoupling calibration procedure. We observe that the restricted lin-
ear VG models outperform the original αVG models in terms of the correlation goodness of fit
on 66.18%, respectively 67.65% of the quoting days with an average relative reduction of 50.83%,
respectively 56.87% of RMSEρ in the Lévy, respectively Sato, setting. Moreover, note that the

6mean
[
(RMSEρaV G − RMSEρlinV G)/RMSEρaV G

]
7Because 1 + c ≈ 1 in this case, where c is given in (6.4), such that µαV G1,1 ≈ µlinV G1,1 .
8max(RMSEρ)=1 since we assume that the market correlation is positive (otherwise the restricted models would

not be appropriate).
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common parameter reaches its upper bound more often under the original αVG models than under
the restricted linear VG models. The analytical and numerical results indicate that building multi-
variate models as a linear combination of Lévy and Sato processes constitutes a suitable alternative
to constructing multivariate models by time-changing a multivariate Brownian motion9.

Under the restricted linear difference of Gamma Lévy and Sato models, the idiosyncratic parameters
corresponding to different assets can be calibrated separately, in contrast to the restricted linear
VG models, where all the idiosyncratic parameters had to be calibrated simultaneously because of
the restriction (6.4). Due to the decoupling calibration procedure, the constraints:

0 < C1,Z < min
j=1,...,n

(C∗1,j) and 0 < C2,Z < min
j=1,...,n

(C∗2,j)

must hold to ensure the positiveness of the parameters C1,j = C∗1,j − C1,Z and C2,j = C∗2,j − C2,Z

for j = 1, . . . , n. We observe a significant improvement in the correlation goodness of fit when
compared to the models with VG marginals, which might be due to the extra common parameter
to fit the correlation structure (see Figures 4 and 5). Table 4 lists the percentage of quoting days
for which the restricted linear DG models outperform the different VG-type models in terms of
the correlation fitting, together with the average relative gain10 that is achieved. One observes
that the extra flexibility in the restricted linear DG models significantly improves the correlation
goodness of fit. However, the values of the correlation RMSE are still rather high (on average
10.69%, respectively 7.94%, of the maximal value of RMSEρ under the restricted linear DG Lévy,
respectively Sato, model.).

res linVG res αVG αVG res linVGS res αVGS αVGS

% of quoting days 69.12 97.06 85.29 79.41 91.18 89.71

av. gain (%) 57.60 64.43 61.69 64.65 74.28 72.45

Table 4: Percentage of quoting days for which the linear DG Lévy(left)/Sato(right) model out-
performs the different VG-type models in terms of the correlation goodness of fit and the average
relative gain.

7.3 Investigation of the co-moments

For the original αVG models, the sign of the standardized co-moments is determined by the sign of
the idiosyncratic parameters θ̃j , j = 1, . . . , n. Under the restricted VG models, only the sign of the

co-skewness is affected by the sign of θ̃j , j = 1, . . . , n, while the correlation and the excesses of co-
kurtosis are positive by construction. Since the idiosyncratic parameters are calibrated first under
the decoupling calibration procedure and since the θ̃j , j = 1, . . . , n turn out to be all negative,
only positive correlations can be achieved for the original αVG models for the data considered.
Furthermore, the sign of the co-skewness then is negative, while the sign of the excess of co-kurtosis
is positive for the data considered (see formulas in Appendix C), as is the case for the restricted
linear VG models. For the restricted linear DG models, the excess of co-kurtosis is proportional
to (C1,Z + C2,Z) and hence, the excess of co-kurtosis will always be positive. The co-skewness

9A similar comparison can be done for models with NIG marginals. The results are similar and available to the
interested reader on demand.

10mean
[
(RMSEρV G − RMSEρlinDG)/RMSEρV G

]
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however can achieve both positive and negative values, since it is proportional to (C1,Z − C2,Z).
Figures 8, 9 and 10 show the maximal attainable values per pair of assets for the correlation
coefficient, the co-skewness µ1,2 and the symmetric excess of co-kurtosis µ2,2, respectively11. These
maximal attainable values are obtained by taking the common parameter equal to its upper bound
minj(1/k̃j), j ∈ {GE, MSFT, PFE} in the corresponding co-moment formula. It is clear that the
upper bound on the common parameter (i.e. on c1 or 1/kZ) translates into a strict upper bound
on the maximal attainable correlation, which is unfavorable. Comparing the maximal attainable
dependence values between the restricted linear VG and the restricted αVG models, it is confirmed
that the restricted linear VG models have a wider range of attainable values for the correlation,
the co-skewness and the excess of co-kurtosis than the restricted αVG models. Moreover, it can
be seen that for 80.88% of the quoting days under consideration the restricted linear VG Lévy
model has a larger maximal attainable correlation than the original αVG Lévy model for all the
asset pairs. Under the Sato setting, this is the case for 75% of the quoting days. Comparing the
higher order co-moments (i.e. µ1,2, µ2,1, µ1,3, µ2,2 and µ3,1) individually, it can be seen that the
restricted linear VG models outperform the original αVG models on roughly half of the quoting
days in our dataset. However, when combining the co-skewnesses and excesses of co-kurtosis, it
can be seen that at least one of the co-skewnesses µ1,2 and µ2,1 of the restricted linear VG model
has a larger maximal attainable value than under the original αVG model for all the asset pairs on
75% (respectively 70.59%) of the quoting days under the Lévy (respectively Sato) setting. For the
excesses of co-kurtosis µ1,3, µ2,2 and µ3,1, this holds for 76.47% (respectively 72.06%) of the quoting
days. When comparing the maximal attainable dependence values between the restricted linear DG
and the restricted linear VG models, it can be seen that there is no unambiguous overall winner,
although the maximal attainable dependence values of the restricted linear DG models exceed the
ones of the restricted linear VG models on slightly more quoting days than vice versa, except for
the excesses of co-kurtosis in the Lévy setting. However, when comparing the restricted linear DG
models to the original αVG models, it is clear that the restricted linear DG models have larger
maximal attainable dependence values on the majority of quoting days that are considered in this
paper. Table 5 summarizes the results.

1. linVG ↔ 2. oaVG 1. linVG ↔ 2. linDG 1. linDG ↔ 2. linVG 1. linDG ↔ 2. oaVG

Lévy Sato Lévy Sato Lévy Sato Lévy Sato

µ1,1 80.88% 75.00% 17.65% 13.24% 35.29% 39.71% 95.59% 86.76%

µ1,2 48.53% 54.41% 16.18% 5.88% 29.41 % 36.76% 82.35% 77.94%

µ2,1 63.24% 60.29% 17.65% 5.88% 30.88% 30.88% 82.35% 79.41%

µ1,2 or µ2,1 75% 70.59% 19.12% 5.88% 35.29% 39.71% 97.06% 85.29%

µ1,3 47.06% 52.94% 32.35% 11.76% 14.71% 29.41% 73.53% 79.41%

µ2,2 47.06% 52.94% 29.41% 14.71% 11.76% 23.53% 80.88% 77.94%

µ3,1 61.76% 55.88% 29.41% 13.24% 8.82% 23.53% 70.59% 75.00%

µ1,3, µ2,2 or µ3,1 76.47% 72.06% 35.29% 19.12% 17.65% 38.24% 89.71% 88.24%

Table 5: Percentage of quoting days for which (one or at least one of) the maximal attainable
dependence value(s) is bigger under model 1 than under model 2 for all the asset pairs under
consideration. Notation: linVG = restricted linear VG models, linDG = restricted linear DG
models, oaVG = original αVG models.

11The results for µ2,1, µ1,3 and µ3,1 are similar and available to the interested reader on demand.
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Finally, we compare the market implied correlation values to the maximal attainable correlation
values, both being displayed in Figure 8. The maximal attainable correlations are higher than
the market implied correlations more often under the restricted linear DG models than under the
different VG-type models. Whenever the maximal attainable correlation for the VG-type models is
higher than the market implied correlation for each pair of assets, the upper bound on the common
parameter will not be reached and the bad correlation fit is solely due to the insufficient number of
common parameters (i.e. one parameter to fit three correlations). When not all of the asset pairs
have a maximal attainable correlation higher than the corresponding market implied correlation,
the upper bound on the common parameter might also explain the bad correlation fit. In this
case, whenever the upper bound on the common parameter is reached, the bad fit arises from the
strict upper bound on the common parameter, while the too low number of common parameters is
the main cause when the upper bound is not reached. A natural extension would be to add extra
common parameters, and the restricted linear DG models can be considered as such an extension.
However, under this model at least one of the common parameters reaches its upper bound for
82.35% of the quoting days in the Lévy setting and 69.12% of the quoting days in the Sato set-
ting, indicating that the strict upper bound is the main cause for the relatively high value of RMSEρ.

Remark 7.1. As the previous results show, the decoupling calibration procedure might lead to
a bad correlation fit due to the upper bound on the common parameters. A joint calibration
procedure as described in Section 5 does not suffer from this limitation, since all the parameters are
calibrated together on both the option price surfaces and the correlation structure. Applying such
a joint calibration might however be computationally challenging, due to the high dimensionality
of the parameter space. As an example, we calibrated the restricted linear VG models using
the joint calibration procedure on a selection of five quoting days exhibiting different levels of
market turmoil, as indicated by the VIX in Table 6. The results of the decoupled calibration are
summarized in Table 7 and those of the joint calibration in Table 8. It can be observed that there
is a significant improvement in the correlation goodness of fit, while retaining a similar option price
surface goodness of fit.

08/01/2008 20/05/2008 04/06/2008 28/10/2008 11/12/2008

VIX 25.43 17.58 20.80 66.96 55.78

Table 6: Volatility index (VIX).

08/01/2008 20/05/2008 04/06/2008 28/10/2008 11/12/2008

MRMSE RMSEρ MRMSE RMSEρ MRMSE RMSEρ MRMSE RMSEρ MRMSE RMSEρ

Res. lin.VG 0.1724 0.1333 0.1286 0.2567 0.1065 0.3007 0.3034 0.1152 0.2998 0.1410

Res. lin.VGS 0.0920 0.1193 0.0813 0.2080 0.0775 0.2492 0.1364 0.1541 0.1071 0.1229

Table 7: Value of the objective functions MRMSE and RMSEρ for the restricted linear VG Lévy
and Sato models under the decoupled calibration.
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08/01/2008 20/05/2008 04/06/2008 28/10/2008 11/12/2008

MRMSE RMSEρ MRMSE RMSEρ MRMSE RMSEρ MRMSE RMSEρ MRMSE RMSEρ

Res. lin.VG 0.1745 9.8919e-11 0.1403 1.8112e-11 0.1121 2.7512e-9 0.3045 2.8172e-11 0.3040 2.539e-10

Res. lin.VGS 0.1015 7.9121e-11 0.1024 6.6849e-12 0.0997 2.4183e-10 0.1472 1.1531e-11 0.1204 8.3133e-9

Table 8: Value of the objective functions MRMSE and RMSEρ for the restricted linear VG Lévy
and Sato models using the joint calibration technique.

8 Conclusion

This paper proposed a general framework for multivariate Sato models with a linear dependence
structure. The asset log-return processes at unit time are modeled as linear combinations of in-
dependent self-decomposable random variables. Dependence is introduced by considering at least
one self-decomposable random variable common to all the assets. The proposed framework can be
seen as an extension of the Lévy framework developed in [2], where the time-homogeneous prop-
erty of the increments is relaxed. For the distribution of the risk factors, we considered a normal
variance-mean mixture with a one-sided tempered stable mixing density and a difference of one-
sided tempered stable distributions. In particular, we elaborated the specific examples of Variance
Gamma (VG) and difference of Gamma (DG) distributions as an illustration. In order to overcome
the difficulties of a joint calibration procedure, we imposed conditions on the model parameters
such that the decoupling calibration procedure proposed in [25] could be employed.

We have proven that the dependence structure under the restricted linear VG models is more flexible
than the dependence structure under the restricted αVG models, while having identical marginal
characteristic functions and hence an identical option price surface goodness of fit. This, together
with the numerical comparison of the proposed linear models to the original αVG models developed
in [36] and [15], indicates that building multivariate Sato models with a linear dependence structure
is a good alternative to considering multivariate Sato models where the dependence is introduced
through subordination, providing further evidence to the conclusion of Guillaume [17]. Indeed, the
dependence structure of the restricted linear VG models and the restricted linear DG models turns
out to be more flexible than the one of the original αVG models on the majority of the quoting
days under consideration, while retaining a comparable option price surface goodness of fit.
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Tables and Figures
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Figure 2: Comparison of the univariate option price surface goodness of fit under the different
Lévy and Sato models.

Strikes
0 5 10 15 20 25 30 35

P
ut

 p
ric

e

0

2

4

6

8

10

12

14

16

18

20
Restricted linear VG/aVG model

Quoted
Model

(a)

Strikes
0 5 10 15 20 25 30 35

P
ut

 p
ric

e

0

2

4

6

8

10

12

14

16

18

20
Restricted linear VG/aVG Sato model

Quoted
Model

(b)

Figure 3: Option price surface goodness of fit for the GE stock on 11/12/2008, under the restricted
linear VG and restricted αVG models in the Lévy (a) and the Sato (b) settings.
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Figure 4: Comparison of the correlation goodness of fit under the Lévy models.
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Figure 5: Comparison of the correlation goodness of fit under the Sato models.

27



Quoting day
04-Jan-2007 23-Jun-2007 10-Dec-2007 28-May-2008 14-Nov-2008 03-May-2009 20-Oct-2009

co
m

m
on

 p
ar

0

2

4

6

8
Upper bound common parameter

Upper bound
c

1
 original α VG

Quoting day
04-Jan-2007 23-Jun-2007 10-Dec-2007 28-May-2008 14-Nov-2008 03-May-2009 20-Oct-2009

co
m

m
on

 p
ar

0

2

4

6

8

10
Upper bound common parameter

Upper bound
1/k

Z
 restricted linVG

c
1
 restricted α VG

Quoting day
04-Jan-2007 23-Jun-2007 10-Dec-2007 28-May-2008 14-Nov-2008 03-May-2009 20-Oct-2009

co
m

m
on

 p
ar

0

0.2

0.4

0.6

0.8
Upper bound common parameter

Upper bound
C

1,Z
 restricted linDG

Quoting day
04-Jan-2007 23-Jun-2007 10-Dec-2007 28-May-2008 14-Nov-2008 03-May-2009 20-Oct-2009

co
m

m
on

 p
ar

0

2

4

6

8

10
Upper bound
C

2,Z
 restricted linDG

Figure 6: Common parameters under the different Lévy models and their upper bound.
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29



Maximal attainable correlation values
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Figure 8: Comparison of the maximal attainable correlation µmax
1,1 values under the Lévy (left)

and Sato (right) models.
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Maximal attainable co-skewness values
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Figure 9: Comparison of the maximal attainable co-skewness µmax
1,2 values under the Lévy (left)

and Sato (right) models. Note that the co-skewness under the restricted linear DG models can
reach both negative and (small) positive values.
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Maximal attainable excess of co-kurtosis values
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2,2 values under the

Lévy (left) and Sato (right) models.

32



Appendix

A Proof of Theorem 1.

Due to the independence of X and Z, we have:

ΨY (u) = ΨX(u) + ΨZ(au)

= iγXu−
σ2
X

2
u2 +

∫
R

(
exp(iux)− 1− iux1{|x|<1}

) h1(x)

|x|
dx

+ iγZau−
σ2
Z

2
a2u2 +

∫
R

(
exp(iaux)− 1− iaux1{|x|<1}

) h2(x)

|x|
dx,

which can be rewritten as:

ΨY (u) = i

(
γX + γZa+

∫
R

(
x
(
1{|x|<1} − 1{|x|<|a|}

)) h2(xa )

|x|
dx

)
u

−
(
σ2
X + a2σ2

Z

)
2

u2 +

∫
R

(
exp(iux)− 1− iux1{|x|<1}

)(h1(x) + h2(xa )

|x|

)
dx.

Set h(x) := h1(x) + h2(xa ). In order for νY = h(x)
|x| dx to be a Lévy measure, it must hold that:

P1 νY is defined on R \ {0},

P2
∫
R min

(
1, |x|2

) h(x)
|x| dx <∞.

Moreover, Y is self-decomposable if

P3 h(x) ≥ 0,

P4 h(x) increasing for negative x and decreasing for positive x.

It is easy to see that the properties P1, P3 and P4 are fullfilled. For the property P2 to hold, it
must hold that ∫

R
min

(
1, |x|2

) h2

(
x
a

)
|x|

dx <∞,

which is true since:∫
R

min
(
1, |x|2

) h2

(
x
a

)
|x|

dx ≤ max
(
1, |a|2

) ∫
R

min
(
1, |y|2

) h2 (y)

|y|
dx <∞.

B Term structure of Lévy standardized co-moments

Let X = {Xt, t ≥ 0} be a multivariate Lévy process with dependent marginals X
(j)
t , j = 1, . . . , n

and joint charactertistic function φX(u; t). The (m,n)-th standardized co-moment of X
(j)
t and X

(k)
t

is given by:

µm,n

(
X

(j)
t , X

(k)
t

)
=

E
[(
X

(j)
t − E

[
X

(j)
t

])m (
X

(k)
t − E

[
X

(k)
t

])n]
(√

Var
[
X

(j)
t

])m(√
Var

[
X

(k)
t

])n , m, n ≥ 0.
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It is easily shown that Var[X
(j)
t ] = tVar[X(j)],∀j = 1, . . . , n by using the infinitely divisibility

property of Lévy processes (see f.i. [21]):

φY (u; t) = (φY (u; 1))
t
.

The (m,n)-th central co-moment is given in terms of the joint charactistic function of X
(j)
t and

X
(k)
t as follows:

E
[(
X

(j)
t − E

[
X

(j)
t

])m (
X

(k)
t − E

[
X

(k)
t

])n]
=

∂m+n

∂(iu)m∂(iv)n

(
e
−i
(
uE
[
X

(j)
t

]
+vE

[
X

(k)
t

])
φX(j)X(k)(u, v; t)

)∣∣∣∣
u=0,v=0

,

which can be calculated using the multivariate product rule for partial derivatives in combination
with the multivariate version of Faà di Bruno’s formula.

Proposition B.1 (The multivariate product rule [18]). Let a and b be continuous functions of
(x1, . . . , xn). Then:

∂n

∂x1 · · · ∂xn
(a · b) =

∑
S

∂(|S|)a∏
j∈S ∂xj

· ∂
(n−|s|)b∏
j 6∈S ∂xj

,

where the index S runs through the set of all subsets of {1, . . . , n}.

Proposition B.2 (The multivariate version of Faà di Bruno’s formula [18]).

∂n

∂x1 · · · ∂xn
f(y) =

∑
π∈Π

f (|π|)(y) ·
∏
B∈π

∂|B|y∏
j∈B ∂xj

,

where y = g(x1, . . . , xn), n ∈ N and π runs through the set Π of all partitions of the set {1, . . . , n}.

Using these two formulae with a = e
−i
(
uE[X

(j)
t ]+vE[X

(k)
t ]
)

and b = f(g(u, v)) = g(u, v)t, with
g(u, v) = φX(j)X(k)(u, v; 1), together with the fact that E[Yt] = tE[Y ] for any Lévy process Y =
{Yt, t ≥ 0}, we can prove that:

E
[(
X

(j)
t − E

[
X

(j)
t

])(
X

(k)
t − E

[
X

(k)
t

])2]
= t

(
Cov

(
X

(j)
1 ,
(
X

(k)
1

)2)
− 2E

[
X

(k)
1

]
Cov
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(j)
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(k)
1

))
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E
[(
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(j)
t − E

[
X

(j)
t

])2 (
X

(k)
t − E

[
X

(k)
t

])]
= t

(
Cov
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X

(j)
1

)2
, X

(k)
1

)
− 2E

[
X

(j)
1

]
Cov

(
X

(j)
1 , X

(k)
1

))
.

Hence, the numerator in the co-skewnesses µ1,2 and µ2,1 scales as t, while the denominator scales
as t3/2 and thus, the co-skewness scales like 1/

√
t over the term.

In a similar way, we obtain:

E
[(
X

(j)
t − E

[
X

(j)
t

])(
X

(k)
t − E

[
X

(k)
t

])3]
= 3t2Var

[
X

(k)
1

]
Cov

(
X
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(
6E
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1 , X
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(k)
1

)2)
−3E

[(
X
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(
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,

34



E
[(
X

(j)
t − E

[
X

(j)
t

])3 (
X

(k)
t − E

[
X

(k)
t

])]
= 3t2Var
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X
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[
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t
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= t2

(
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[
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]
+ 2Cov
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(
X

(k)
1

)2))
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Hence, the numerator of the co-kurtoses scales as t2 + t, while the denominator scales as t2. The
co-kurtosis is thus the sum of a constant term independent of t and the excess of co-kurtosis, which
scales like 1/t.

C Co-moments linear versus subordinated model setting

Imposing the following condition on both the αVG and the linear VG models, we can compare the
range of attainable values for linear and non-linear dependence measures between the two models:

σ̃2
j

k̃j θ̃2
j

=
σ2
Z

kZθ2
Z

= c, ∀j = 1, . . . , n, (C.1)

for some c > 0. Indeed, it then turns out that the two models have exactly the same marginal
structure. Under the decoupled calibration procedure, where the idiosyncratic parameters are
calibrated seperately from the systemic parameters, the upper bound on the common parameter is
the same under the restricted αVG models as under the restricted linear VG models:

c1 <
1

k∗
and

1

kZ
<

1

k∗
,

where 1
k∗ = minj

(
1
k̃j

)
.

C.1 Correlation

The correlation between Y
(i)
1 and Y

(j)
1 , i 6= j, under the restricted αVG model is given by:

µαV G1,1

(
Y

(i)
1 , Y

(j)
1

)
= sign(θ̃iθ̃j)

√
k̃ik̃jc1

c+ 1
,

and under the restricted linear VG model we have:

µlinV G1,1

(
Y

(i)
1 , Y

(j)
1

)
= sign(θ̃iθ̃j)

√
k̃ik̃j

kZ
,
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where sign(θ̃iθ̃j) = +1 under both models due to the imposed constraints (C.1). Hence, the ratio
of the maximal attainable correlation coefficients is given by:

µαV G,max
1,1

(
Y

(i)
1 , Y

(j)
1

)
µlinV G,max

1,1

(
Y

(i)
1 , Y

(j)
1

) =
1

c+ 1
,

which is smaller than 1 since c > 0.

C.2 Co-skewness

We will focus on µ1,2, the result for µ2,1 then follows by symmetry.

The co-skewness between Y
(i)
1 and Y

(j)
1 , i 6= j, under the αVG model is given by:

µαV G1,2

(
Y

(i)
1 , Y

(j)
1

)
=

θ̃ik̃ik̃j

(
2k̃j θ̃

2
j + σ̃2

j

)
c1√

σ̃2
i + k̃iθ̃2

i

(
σ̃2
j + k̃j θ̃2

j

) ,
which reduces to

µαV G1,2

(
Y

(i)
1 , Y

(j)
1

)
=

√
k̃ik̃j(2 + c)c1

sign(θ̃i)(c+ 1)3/2
,

under the restricted αVG model. Under the restricted linear VG model it is given by:

µlinV G1,2

(
Y

(i)
1 , Y

(j)
1

)
=

θ̃iθ̃
2
j k̃ik̃

2
j

(
2 + 3

σ2
Z

kZθ2Z

)
kZ

√
σ̃2
i + k̃iθ̃2

i

(
σ̃2
j + k̃j θ̃2

j

) =

√
k̃ik̃j(2 + 3c)

sign(θ̃i)kZ(c+ 1)3/2
.

The ratio of the maximal attainable co-skewness can thus be written as:

µαV G,max
1,2

(
Y

(i)
1 , Y

(j)
1

)
µlinV G,max

1,2

(
Y

(i)
1 , Y

(j)
1

) =
2 + c

2 + 3c
< 1.

Note that we assume θ̃i to be the same under both models, hence the sign of the co-skewness will
be equal under both model settings.

C.3 Co-kurtosis

We will focus on the excesses of co-kurtosis C1,3 and C2,2. The result for C3,1 then follows by
symmetry. From the formulas in Appendix B, we have that the excesses of co-kurtosis can be
written in terms of the standardized co-moments as follows:

C1,3(Y
(j)
t , Y

(k)
t ) = µ1,3(Y

(j)
t , Y

(k)
t )− 3µ1,1(Y

(j)
1 , Y

(k)
1 ),
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(j)
t , Y

(k)
t ) = µ3,1(Y

(j)
t , Y

(k)
t )− 3µ1,1(Y

(j)
1 , Y

(k)
1 ),

C2,2(Y
(j)
t , Y

(k)
t ) = µ2,2(Y

(j)
t , Y

(k)
t )− 1− 2(µ1,1(Y

(j)
1 , Y

(k)
1 ))2.
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The symmetric excess of co-kurtosis under the αVG model is given by:

CαV G2,2

(
Y

(i)
1 , Y

(j)
1

)
=
c1k̃ik̃j
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σ̃2
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(
Y
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1

)
=
k̃ik̃j(c

2 + 4c+ 6)c1
(1 + c)2

> 0

in the restricted model setting, while under the restricted linear VG model it is given by:

ClinV G2,2

(
Y

(i)
1 , Y

(j)
1

)
=
k̃2
i k̃

2
j θ̃

2
i θ̃

2
j

(
6k3
Zθ

4
Z + 12k2

Zθ
2
Zσ

2
Z + 3kZσ

4
Z

)
k4
Zθ

4
Z

(
θ̃2
i k̃i + σ̃2

i

)(
θ̃2
j k̃j + σ̃2

j

) =
3k̃ik̃j(c

2 + 4c+ 2)

kZ(1 + c)2
> 0.

The ratio of the maximal attainable excess of co-kurtosis is therefore given by:

CαV G,max
2,2

(
Y

(i)
1 , Y

(j)
1

)
ClinV G,max

2,2

(
Y

(i)
1 , Y

(j)
1

) =
c2 + 4c+ 6

3(c2 + 4c+ 2)
,

which is smaller than 1 if and only if
c2 + 4c > 0,

which is always true, since c > 0.

For the asymmetric excess of co-kurtosis C1,3, we have:

CαV G1,3

(
Y

(i)
1 , Y

(j)
1

)
=

6c1k̃ik̃
2
j θ̃iθ̃j

(
k̃j θ̃

2
j + σ̃2

j

)
√
k̃iθ̃2

i + σ̃2
i

(
k̃j θ̃2

j + σ̃2
j

)3/2
,

under the αVG model. Imposing condition (6.4), this reduces to:

CαV G1,3

(
Y

(i)
1 , Y

(j)
1

)
=

6
√
k̃ik̃

3/2
j (1 + c)c1

sign(θ̃iθ̃j)(1 + c)2
.

Under the restricted linear VG model we have:

ClinV G1,3

(
Y

(i)
1 , Y

(j)
1

)
=

3k̃ik̃
3
j θ̃iθ̃

3
j

(
2 + 4

σ2
Z

kZθ2Z
+

σ4
Z

k2Zθ
4
Z

)
kZ

√
k̃iθ̃2

i + σ̃2
i

(
k̃j θ̃2

j + σ̃2
j

)3/2
= sign(θ̃iθ̃j)

3
√
k̃ik̃

3/2
j (2 + 4c+ c2)

kZ(1 + c)2
,

where sign(θ̃iθ̃j) = +1 under both models due to the imposed constraints, leading to

CαV G,max
1,3

(
Y

(i)
1 , Y

(j)
1

)
ClinV G,max

1,3

(
Y

(i)
1 , Y

(j)
1

) =
2(1 + c)

2 + 4c+ c2
< 1.
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processes. Working paper.

[10] Carr, P., Geman, H., Madan, D.B. and Yor, M. (2007). Self-decomposability and Option
Pricing. Mathematical Finance, 17(1), 31-57.

[11] Cont, R. and Tankov, P. (2004). Financial Modelling with Lévy processes. Chapman and
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