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ABSTRACT: For the two-electron Hookean atom, it is first emphasized that, for a
specific force constant k � 1/4, the ground-state wave function has a simple dependence on
the interelectronic separation r12, namely, (1 � 1

2
r12)exp(� 1

8
r12
2 ). For this two-electron model,

therefore, the study of Rassolov and Chipman on the electron–electron cusp conditions on
the spherically averaged wave function for the N electron atomic ions can be generalized to
all orders in the interelectronic separation r12. This Hookean model has therefore been used
to give some justification for an ansatz for the spherically averaged wave function in atomic
ions with N electrons for N � 2. Several approximate two-electron wave functions
satisfying the Rassolov and Chipman conditions were tested and found to give excellent
results. Another ansatz has been tested numerically on the ground state of two-electron
atomic ions and the H2 molecule. Finally, for the Hookean atom a partial differential
equation that is essentially for the pair correlation density is given in the Appendix.
© 2003 Wiley Periodicals, Inc. Int J Quantum Chem 95: 21–29, 2003

Introduction

T he two-electron problem, and in particular
He-like ions, has been extensively studied by

accurate quantum chemical techniques, but an ex-

act analytic solution of the ground-state spatial
wave function �(r1, r2) has not proved feasible to
date. The present study represents a modest step
along the road to achieving this objective.

Early work of Kestner and Sinanoglu [1] pointed
to the fact that the electron correlation energy in the
ground state of the He atom was probably not
sensitive to the precise form of the electron–nuclearCorrespondence to: C. Amovilli; e-mail: amovilli@dcci.unipi.it
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interaction but dominantly determined by the Cou-
lombic repulsion e2/r12, where r12 � �r1 � r2�, be-
tween the two (spin-paired) electrons. These au-
thors therefore proposed the so-called two-electron
Hookean atom, for which the Hamiltonian is, in
a.u.,

Ĥ � �
1
2 ��1

2 � �2
2� �

1
2 k�r1

2 � r2
2� � r12

�1, (1)

that is, the two Coulombically repelling electrons
are harmonically confined, with spring constant k.
In later work, for k � 1/4, an exact ground-state
wave function was shown to be [2–8]

� � C exp��
R2

2 ��1 �
r12

2 �exp��
r12

2

8 �, (2)

where R is the center of mass coordinate R � (r1 �
r2)/2. In recent work, Amovilli and March [9] con-
structed the near-diagonal behavior of the first-
order density matrix based on this model and em-
phasized the dependence of the correlation kinetic
energy on the electron–electron cusp condition first
discussed by Kato [10] and later by Bingel [11]. In
an earlier article, on the other hand, the wave func-
tion at coincidence for the Hookean atom was stud-
ied by March et al. [12].

Here, our focus will be on approximations gen-
eralizing the cusp condition of Rassolov and Chip-
man [13] (see also Nagy and Sen [14]) in the power
series expansion of the spherically averaged wave
function in the interatomic separation r12 and on the
partial differential equation satisfied by (|g)1/2 in
the Hookean model, with | the ground-state den-
sity and g(r1, r2) the pair correlation density, this
being set out in the Appendix.

From the investigation of Rassolov and Chipman
[13] we can expand the spherically averaged wave
function �� in the interatomic separation r12 of a
chosen pair of electrons

�� � ��0� � ��1�r12 � ��2�r12
2

� ��3�r12
3 � · · · � ��n�r12

n � · · ·. (3)

The low-order coefficients in Eq. (3) were shown in
Ref. [13] to satisfy

��1� �
1
2 ��0�, (4)

which is the Kato [10] electron–electron cusp con-
dition. The new result of Rassolov and Chipman
[13] was to relate �(3) to �(2) and �(0):

��3� �
1
3 ��2� �

1
48 ��0�. (5)

Approximate Wave Functions
Satisfying the Rassolov–Chipman
Conditions for the Hookean Atom

Let us bring these low-order results immediately
into contact with the exact wave function [Eq. (2)]
for the two-electron Hookean atom. The depen-
dence on r12 can then be readily expanded to all
orders as the sum of a series with even powers of r12
plus an odd power series:

�� � �1 �
r12

2 � �
j�0

	

��1�j
r12

2j

8jj! . (6)

One can write from Eq. (6) the forms of �(0) �
�(3) in Eq. (3) explicitly, and in particular it is
readily verified that Eq. (6) satisfies the specific
known cusp conditions (4) and (5).

However, it is plain from Eq. (6) that in the
Hookean model the coefficients of the even and odd
series in powers of r12 are intimately related and in
particular �(3)/�(0) � � 1

16.
As emphasized in Ref. [13], in the general case of

an atomic ion in Eq. (5) �(2) itself is not determined
and depends on the detailed model adopted. Nev-
ertheless, it seems of interest to construct a more
general ansatz for the spherically averaged wave
function, which embraces not only the general re-
sults (4) and (5) but also the detailed Hookean atom
form.

The original Eq. (3) can be rewritten as

�� � ��0� � ��2�r12
2 � · · ·

� �1
2 ��0� � �1

3 ��2� �
1

48 ��0��r12
2 �r12 � · · ·, (7)

where we applied the relationships (4) and (5) re-
lating the odd and even low-order terms. Now an
approximate Gaussian summation motivated by
Eq. (2) yields
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�� � ��0�exp����2�

��0��r12
2 �

�
1
2 ��0�r12exp��2

3
��2�

��0� �
1

24�r12
2 �. (8)

This in turn leads back to �� as �� Hookean plus an
extra term

�� � �
1
2 ��0�r12exp����2�

��0��r12
2 �

� �1 � exp��
1
3

��2�

��0� �
1

24��. (9)

This extra term (9) goes to zero because �(2) �
� 1

8 �(0) in the Hookean case. Equation (8) therefore
is an approximate summation, correct to third order
in r12 in the general case, and embracing exactly Eq.
(2) for the Hookean model.

The approximate wave function (8) was applied
for two electrons in a harmonic external potential
with arbitrary spring constant k. The ratio �(2)/�(0)

was determined by minimizing the internal energy
E. Table I presents the energy E for different values
of the spring constant k. The energy E is compared
with the value given by the interpolation formula
suggested by Taut [4] (in three cases, denoted by an
asterisk, the exact results are presented instead of
the values obtained by the Taut interpolation for-
mula). All energies correspond to the total energy
minus (3/2)
k.

In a wide range of k the results shows that the
ansatz (8) is a good one-parameter approximation
to the exact ground-state wave function of a
Hookean atom and of course is exact when k � 1/4.

As a next step we start from Taut’s general so-
lutions for two electrons in an arbitrary harmonic
confining potential. One can satisfy both cusp and
Rassolov–Chipman conditions by the function

�� � ��0��1 �
1
2 r12 � tr12

2 �exp���1
8 � 2t�r12

2 �, (10)

which is exact for k � 0.25 (t � 0) and for k � 0.01
(t � 1/20). In other cases t is a variational param-
eter to be optimized. This form looks similar to the
Hylleraas function with three parameters for he-
lium [15]:

� � 1.331�1 � 0.292r12 � 0.131�r1 � r2�
2�

 exp��1.816�r1 � r2��. (11)

For comparison purposes the energies from ac-
curate perturbation calculations [16] and from Har-
tree–Fock (HF) calculations performed with an
even-tempered Gaussian basis set of 12 functions
are also added to Table II. The Taut interpolation
formula is good enough for k � 1 while the pertur-
bation calculation is good for k � 1. So, the last two
columns show the percentages of correlation en-
ergy recovered by the two approximations dis-
cussed here.

TABLE I ______________________________________________________________________________________________
Total energy minus (3/2)
k (E) for two electrons in a harmonic external potential with spring constant k
determined from Eq. (8).

k ��(2)/�(0) E 2/�k ETaut � Epert

0.001335 0.00299 0.19660 54.73806 0.16442* 5.23154 0.15685
0.002500 0.00447 0.24082 40.00000 0.20744 4.47214 0.20287
0.010000 0.01081 0.36932 20.00000 0.35000* 3.16228 0.34852
0.040000 0.02838 0.60067 10.00000 0.59899 2.23607 0.59835
0.250000 0.12469 1.25000 4.00000 1.25000* 1.41421 1.24991
1.000000 0.29938 2.23033 2.00000 2.22899 1.00000 2.23009
4.000000 0.63625 4.05980 1.00000 4.05634 0.70711 4.05787
25.00000 1.58438 9.22108 0.40000 9.22913 0.44721 9.21103
100.0000 3.08125 17.47154 0.20000 17.54788 0.31623 17.44867

ETaut is the energy E obtained by the interpolation formula of Taut [4]. An asterisk denotes that these are the exact values instead
of numbers obtained by the interpolation formula. Epert denotes energies from accurate perturbation calculations [16]. � is the
expansion parameter for the perturbation theory and corresponds to 1/k1/4. All values are in a.u.
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Finally, for this model atom, because the pertur-
bative solution is an infinite series in r12 times the
exponential exp[�(1/4)
kr12

2 ], we also tested a
more flexible function

�� � �1 �
1
2 r12 � qr12

2 � � �k
24 �

1
48 �

q
3�r12

3 �
 exp��

1
4 �kr12

2 �, (12)

which is a third-order polynomial times the nonin-
teracting solution. This third approximation satis-
fies cusp and Rassolov–Chipman conditions and
has a linear variational parameter q. As can be seen
from Table III this function is better than the pre-
vious two. The last column shows how much of the
correlation energy is included in E(q). The wave
function (12) includes one more exact solution,
more precisely that corresponding to k � 0.001335
(see Ref. [4]).

Approximate Wave Functions
Satisfying the Cusp and
Rassolov–Chipman Conditions for
Two-Electron Atomic Ions

Now, we turn to the case of the He atom and
two-electron ions. An approximate wave function
may be written in the form satisfying the Rassolov–
Chipman conditions

� � e���r1�r2�	1 �
1
2 r12 �

3
16 �r1 � r2�

2

� �3t �
�

6� r12
2

�r1 � r2�
� t

r12
3

�r1 � r2�

 , (13)

where � and t are variational parameters.
The Rassolov-Chipman condition is easily veri-

fied by putting first

r1 � r2 � 2 R �
�1 � 	2�

4R r12
2 � O�r12

4 �

�r1 � r2�
2 � 	2r12

2 � O�r12
4 �, (14)

TABLE II ______________________________________________________________________________________________
Total energy minus (3/2)
k (E(t)) for two electrons in a harmonic external potential with spring constant k
determined from Eq. (10). Comparison with energies of Table I and from HF Calculations.

k t E(t) E(HF) � Ecorr E % of Ecorr E(t) % of Ecorr

0.001335 0.05837 0.16447 0.18672 0.02232 — 99.8
0.002500 0.05663 0.20754 0.23179 0.02435 — 99.6
0.010000 0.04999 0.35000 0.37916 0.02916 33.7 100.0
0.040000 0.03683 0.59881 0.63247 0.03348 95.0 100.0
0.250000 0.00000 1.25000 1.28851 0.03851 100.0 100.0
1.000000 �0.05539 2.23013 2.27153 0.04144 99.4 99.9
4.000000 �0.15528 4.05802 4.10153 0.04366 95.6 99.6
25.00000 �0.42208 9.22035 9.25814 0.04711 78.7 80.2
100.0000 �0.82925 17.51685 17.49985 0.05118 55.3 —

t is the variational parameter in Eq. (10). E(t) is the internal energy determined from Eq. (10) with the variational parameter t. All values
are in a.u.

TABLE III _____________________________________
Total energy minus (3/2)
k (E(q)) for two electrons
in a harmonic external potential with spring
constant k determined from Eq. (12) and amount of
correlation energy recovered.

k q E(q) E(q) % of Ecorr

0.001335 0.06500 0.16442 100.0
0.002500 0.06100 0.20749 99.8
0.010000 0.05000 0.35000 100.0
0.040000 0.03500 0.59880 100.0
0.250000 0.00000 1.25000 100.0
1.000000 �0.04400 2.23016 99.9
4.000000 �0.11300 4.05818 99.3
25.00000 �0.26000 9.21231 97.3
100.0000 �0.43400 17.45121 95.0

E(q) is the internal energy determined from Eq. (12) with the
linear variational parameter q. All values are in a.u.
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where

	 �
R� � r�12

Rr12
, (15)

and then by spherical averaging according to

F� �
1
2 �

�1

1

F�	�d	 (16)

for a general function of 	.
The best HF and exact energies in the literature are

�2.86168 and �2.90372 a.u., respectively. The corre-
lation energy is then �0.04204 a.u. Table IV presents
the variational total energy for the He atom and two-
electron ions considered in this work. The second and
third columns show the optimal value of the varia-
tional parameters � and t. E is the total energy ob-
tained with these parameters. Elit denotes the best
values found in the literature [17–19] reported with a
truncation at 10�5 a.u. The next column shows how
much of the correlation energy is included in E. The
results are good enough although not so good as in
the Hookean model. But, in this case we do not have
separability and there is also one more variable. The
Hylleraas three-terms function [Eq. (11)], which
shows an energy of �2.90243 a.u., looks slightly better
than the present ansatz [Eq. (13)], but the Hylleraas
expression has three variational parameters, while we
have only two in Eq. (13). Moreover, it is interesting to
remark that the present ansatz [Eq. (13)] leads to
better result than a full configuration interaction func-
tion obtained with a standard cc-pVTZ basis set.

For comparison, Table IV presents the variational
results of Kleinekathöfer et al. [20]. Their variational

wave function satisfies the electron–nucleus and elec-
tron–electron cusps and the correct asymptotic be-
haviour. To ensure the latter the wave function ex-
plicitly contains the energy that is determined self-
consistently. Their one-parameter wave function,
however, does not exactly satisfy the Rassolov–Chip-
man condition. For He, Li�, and Be�� our present
approach leads to a better performance with two vari-
ational parameters. It, however, becomes worse for
higher Z because we have not considered at all the
problem of the electron–nucleus cusp. It is likely that
a synthesis of the approach of Kleinekathöfer et al.
and ours would lead to excellent results.

It is interesting to note the behavior of t for large
atomic numbers; It becomes linear in Z:

t �
�Z � 2�

18 . (17)

Moreover, � also tends to Z. So, at some point there
is a cancellation in one coefficient and for large Z
the working ion wave function tends to

� � e�Z�r1�r2�	1 �
1
2 r12 �

3
16 �r1 � r2�

2

�
1
3

r12
2

�r1 � r2�
�

�Z � 2�

18
r12

3

�r1 � r2�

 , (18)

which gives a substantial fraction of correlation up
to high values of Z.

A closed form of the energy as a function of Z
can be obtained from Eq. (18). Grouping the terms
with the same Z powers one has

TABLE IV _____________________________________________________________________________________________
Electronic energy for the two-electron atomic ions considered in this work.

Ion � t E Elit % of Ecorr EKPTT % of Ecorr

H� 0.780 0.00843 �0.52402 �0.52775 91 �0.5265 97
He 1.855 0.03011 �2.90153 �2.90372 95 �2.9000 91
Li� 2.885 0.07271 �7.27712 �7.27991 94 �7.2749 89
Be2� 3.905 0.12209 �13.65088 �13.65557 89 �13.6499 87
B3� 4.920 0.17417 �22.02419 �22.03097 85 �22.0249 87
C4� 5.930 0.22725 �32.39753 �32.40625 81 �32.4000 86
N5� 6.935 0.28059 �44.77104 �44.78145 77 �44.7750 86
O6� 7.940 0.33463 �59.14472 �59.15660 74 �59.1500 85

The second and third columns show the optimal value of the variational parameters � and t of Eq. (13). E is the total energy obtained
with these parameters. Elit denotes the best values found in the literature [18]. The sixth column shows how much of the correlation
energy is included in E. For comparison the last two columns present the variational energy calculated by Kleinekathöper et al. [20]
and the percentage of correlation energy obtained by them. All values are in a.u.
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E �
�Z2 � 0.96648Z � 0.50823 � 0.58666/Z � 0.22548/Z2 � 0.09726/Z3

1 � 1.59149/Z � 0.35886/Z2 � 0.76735/Z3 � 0.38356/Z4 , (19)

in which the coefficients have been evaluated by
numerical integration. In Table V we compare the
energies calculated by means of Eq. (19) with the
HF large Z corresponding estimates, namely,
�(Z � 5/16)2, for some two-electron atomic ions in
the range of Z between 30 and 90. In all cases more
than 65% of correlation energy is recovered.

Approximate Wave Function for the
H2 Molecule

The Rassolov–Chipman conditions are impor-
tant for molecules as well. To demonstrate it the H2
molecule is studied. We select the working function

� � e�
��1��2�	1 �
1
2 r12 � c1r12

2

� c2r12
3 � c3��1 � �2�

2
 , (20)

where 
 and cj are variational parameters. �j and �j

are essentially elliptical coordinates, here defined as

�j �
rjA � rjB

D �j �
rjA � rjB

D , (21)

D being the internuclear distance. The term in (�1 �
�2)2 has been introduced because this combination
of variables enters in the Heitler–London valence

bond (VB) wave function (see below). Expression
(20) is also similar to the low-order Kołos–
Wolniewicz expansion [21]. Figure 1 presents the
energy as a function of the internuclear separation.
For comparison, the HF values and the results of
Kołos and Wolniewicz are also shown. The percent-
age of correlation energy recovered by the use of
function (20) reduces from 85 at D near 0.5 a.u. to 75
at D close to 3 a.u., a result that shows that the role
of cusp conditions becomes less important in going
toward the H2 dissociation. Expression (20) is not
forced to satisfy the Rassolov–Chipman condition
but the optimal cj reflect some relevant behavior.
Expanding Eq. (20) near r123 0 and after spherical
averaging we have

�� � exp��
2


D �RA � RB�� � 	1 �
1
2 r12

� ��



6 � 1
RA

�
1

RB
� � c1

�
2

3D2 �1 � cos �c3�r12
2

� ��



12 � 1
RA

�
1

RB
� � c2�r12

3 � O�r12
4 �
,

(22)

where RA and RB are, respectively, the distances
between the two-electron center of mass and the
nuclei A and B and  is the angle between the two
segments RA and RB.

In Table VI the optimal parameters 
, c1, c2, and
c3 are presented for the H2 molecule at several
internuclear distances D. As expected, 
 is essen-
tially proportional to D while instead it is interest-
ing to note that c3 is proportional to D2. There is
some balance in Eq. (22). Thinking to the Rassolov–
Chipman conditions it looks approximately as fol-
lows:

1
3 ��




6 � 1
RA

�
1

RB
� � c1� � �




12 � 1
RA

�
1

RB
� (23)

1
3 �

2
3D2 �1 � cos �c3 �

1
48 � c2, (24)

TABLE V ______________________________________
Energies calculated by Eq. (19), large Z HF
estimates, namely, �(Z � 5/16)2, their difference,
and percent of correlation energy included for some
two-electron atomic ions.

Z E � (Z � 5/16)2 �E % Ecorr

40 �1575.13165 �1575.09766 �0.03400 72
50 �2468.88076 �2468.84766 �0.03310 70
60 �3562.63010 �3562.59766 �0.03244 69
70 �4856.37959 �4856.34766 �0.03193 69
80 �6350.12918 �6350.09766 �0.03152 67
90 �8043.87883 �8043.84766 �0.03117 66

All values are in a.u.
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although, of course, RA, RB, and  are variables and
not constant numbers.

Our work is somehow related to that of Patil and
coworkers [22], who constructed a variational wave
function with one parameter that satisfies nucleus–
electron and electron–electron cusp conditions and
has a correct asymptotic behavior. In our wave
function neither the nucleus–electron nor the cor-
rect asymptotic fall were explicitly taken into ac-
count. We might expect that a simple variational
wave function satisfying all the conditions men-
tioned above would result in even more accurate
energies.

Note that the Heitler–London wave function is

�HL � e��r1Ae��r2B � e��r1Be��r2 A, (25)

which becomes in the elliptical coordinates (21)

�HL � e�0.5�D��1��1�e�0.5�D��2��2� � e�0.5�D��1��1�e�0.5�D��2��2�

� e�0.5�D��1��2��e�0.5�D��1��2� � e0.5�D��1��2��

� e�0.5�D��1��2��2 �
1
4 �2D2��1 � �2�

2 � · · ·� ,

(26)

showing both the difference and resemblance to our
working function (20).

Summary and Future Directions

It has been amply demonstrated here that the
Rassolov–Chipman study of the electron–electron
cusp conditions on the spherically averaged wave
function for N electron atomic ions is a helpful tool
in facilitating variational approaches to two-elec-
tron systems. It is important to emphasize that the
Rassolov–Chipman condition among �(0), �(2), and
�(3) [Eq. (5)] is an exact statement when r12 tends to
0 for any given external potential. This turns out to
be true not only for single-center atomic ions but for
the H2 molecule as well.

In the present study, the model Hookean atom
has provided a useful yardstick in constructing
such variational wave functions. Thus, several
choices have been focused on because they contain
exact limits for this model atom for specific chosen
values of its force constant. Our approximation [Eq.
(12)] for the Hooke model is the best one-parameter
wave function (at least in the range of the spring
constant considered).

We draw attention in this summary to the valu-
able approximation (18) to the correlated ground-
state wave function for two-electron atomic ions in
the (nonrelativistic) limit of large atomic number Z.
The wave function already embodies a substantial
fraction of the correlation energy up to large values

TABLE VI _____________________________________
Optimal parameters �, c1, c2, and c3 of Eq. (20) for
the H2 molecule at internuclear distance D.

D 
 c1 c2 c3

0.6 0.473 �0.18550 0.04847 0.04207
0.7 0.543 �0.13368 0.02767 0.05611
0.8 0.607 �0.10931 0.01859 0.07401
1.0 0.725 �0.09089 0.01198 0.12084
1.2 0.833 �0.08524 0.00992 0.18249
1.3 0.885 �0.08396 0.00940 0.21939
1.4 0.935 �0.08334 0.00904 0.26091
1.5 0.983 �0.08285 0.00876 0.30714
1.6 1.031 �0.08223 0.00856 0.35832
1.8 1.122 �0.08235 0.00827 0.47914
2.0 1.212 �0.08224 0.00814 0.62650
2.2 1.297 �0.08305 0.00812 0.80691
2.4 1.382 �0.08418 0.00827 1.02602
2.6 1.464 �0.08656 0.00850 1.29238
2.8 1.565 �0.09190 0.01001 1.61159

All values are in a.u.

FIGURE 1. Total energy of H2 molecule as a function
of internuclear separation (1). HF values and exact re-
sults of Kołos and Wolniewicz (ex) are also shown.
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of Z, and also a closed form (19) has been obtained
for the corresponding ground-state energy.

That the approach adopted here is valuable be-
yond single-center atomic ions is then demon-
strated by explicit calculations of the ground state
of the H2 molecule. This again shows clearly that
the Rassolov–Chipman conditions are important
for multicenter problems in quantum chemistry.

As to future directions, note that according to a
recent article [23] the two-electron problem can
play an important role in the solution of the many-
electron problem. As a first step, it would be of
obvious interest if the progress reported here in
constructing two-electron variational wave func-
tions compatible with the Rassolov–Chipman con-
ditions could be subsumed into a variational treat-
ment of the ground state of Be or the corresponding
four-electron atomic ion sequence. Beyond the elec-
tron–electron cusp and the Rassolov–Chipman con-
ditions, the electron–nucleus cusp and the correct
asymptotic behavior are also of importance. A vari-
ational wave function satisfying all these conditions
would lead to even better results.

Appendix: Partial Differential
Equation for Pair Correlation
Function

To propose a differential equation for (|g)1/2 we
start from the definition

|�r�g�r, r�� � |�r�|�r�� � |�r�|xc�r, r��, (27)

with

� |xc�r, r��dr� � �1 for all r. (28)

In the special case of the HF pair function we have

|�r�gx�r, r�� � |�r�|�r�� � ���r, r���2. (29)

On the other hand,

|�r�g�r1, r2� � ��r1, r2� � ���r1, r2��2. (30)

The last equality follows from the fact that we have
a two-electron system. From Eq. (2) we obtain

��r1, r2� � ���2 � C2e�R2�1 �
r12

2 �
2

exp��
r12

2

4 �. (31)

Comparing Eqs. (30) and (31) the relation

P�r1, r2, r12� �
2
C �|g�1/ 2 � �2 � r12�e��r1

2�r2
2�/4 (32)

can be gained. The derivation of Eq. (32) with re-
spect to r12 leads to

p �
�P
�r12

� e��r1
2�r2

2�/4 (33)

Thus, p satisfies a Schrödinger equation for two
noninteracting but harmonically confined particles:

��r1
2 � �r2

2 � p�r1, r2, r12� � 2�� �
1
8 �r1

2 � r2
2��

� p�r1, r2, r12� � 0. (34)

This is a partial differential equation for the pair
correlation function and valid for the model
Hookean atom with k � 1/4. It should be interest-
ing to generalize Eq. (34) to a different case by
means of an effective potential U(r1, r2).

From the body of the text, it seems that, more in
general but now only approximately, the square
root of the wave function for the two spin-paired
electrons at coincidence satisfies a one-particle
Schrödinger equation, but this is an area needing
deeper study in the future.
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